

Wafer-Scale Transfer and Integration of Tungsten-Doped Vanadium Dioxide Films

Yuan Li, He Ma,* Run Shi, Yonghuang Wu, Shifeng Feng, Yulan Fu, Yuanqi Wei, Xuzhe Zhao, Kaichen Dong, Kaili Jiang, Kai Liu,* and Xinping Zhang*

Cite This: *ACS Nano* 2025, 19, 6209–6220

Read Online

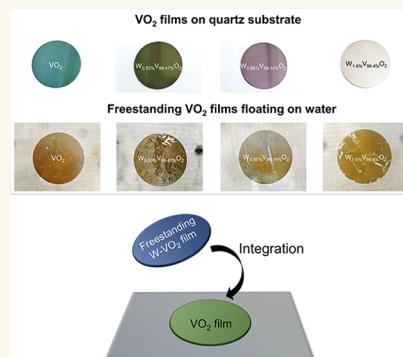
ACCESS |

Metrics & More

Article Recommendations

SI Supporting Information

ABSTRACT: Modern optoelectronic devices trend toward greater flexibility, wearability, and multifunctionality, demanding higher standards for fabrication and operation temperatures. Vanadium dioxide (VO_2), with its metal–insulator transition (MIT) at 68 °C, serves as a crucial functional layer in many optoelectronic devices. However, VO_2 usually needs to grow at >450 °C in an oxygen-containing atmosphere and to function across its MIT temperature, leading to low compatibility with most optoelectronic devices, especially on flexible substrates. In this work, we report a layer-by-layer transfer method of wafer-scale tungsten-doped VO_2 films, which enables sequential integration of the VO_2 films with low MIT temperatures (down to 40 °C) onto arbitrary substrates. Notably, by stacking multiple VO_2 films with different doped levels, a quasi-gradient-doped VO_2 architecture can be achieved, effectively broadening the MIT temperature window and reducing the hysteresis of VO_2 . These integrated VO_2 films find a wide scope of applications in flexible temperature indicator strips, infrared camouflage devices, nonreciprocal ultrafast light modulators, and smart photoactuators. Our work promotes the development of more flexible and tunable optoelectronic devices integrated with VO_2 .


KEYWORDS: vanadium dioxide, tungsten doping, phase transition, wafer-scale transfer, vertical integration

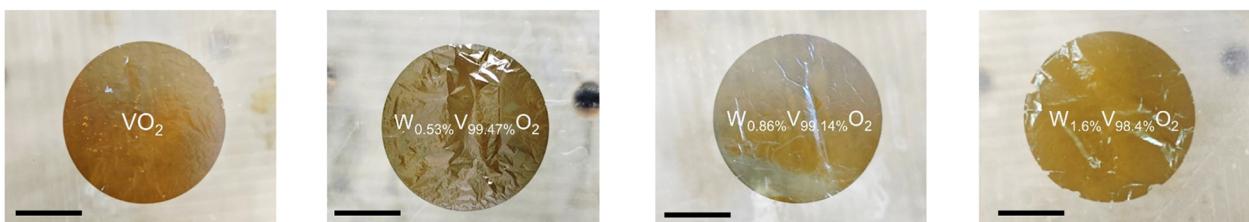
1. INTRODUCTION

The development of modern electronic devices with greater flexibility, wearability, and multifunctionality demands higher standards for fabrication and operation temperatures. In electronic devices, metal oxide films are widely used as dielectric layers as well as sensing, energy harvesting, and driving layers.^{1–4} As a textbook functional metal oxide, vanadium dioxide (VO_2), known for its famous metal–insulator transition (MIT) at around 68 °C, has attracted long-standing attention in the past decades.^{5–10} Various methods, including magnetron sputtering,¹¹ pulsed laser deposition,¹² atomic layer deposition,¹³ and molecular beam epitaxy,¹⁴ have been employed to synthesize high-quality VO_2 films. For instance, stress-free VO_2 films can be grown on mica substrates, allowing for precise control over their microstructure and properties by magnetron sputtering.^{15,16} Due to its MIT, VO_2 becomes an essential component in many smart devices such as self-adaptive heat management devices,¹⁷ terahertz modulators,^{18,19} microactuators,^{20–22} and neurosynaptic devices.^{23–25} It is crucial to develop a universal approach to integrating VO_2 films into diverse electronic devices. However, crystalline VO_2 films usually need to grow at >450 °C in an oxygen-containing atmosphere and to function across its MIT temperature,^{8,26–28} leading to low compatibility with most electronic devices, especially on flexible substrates

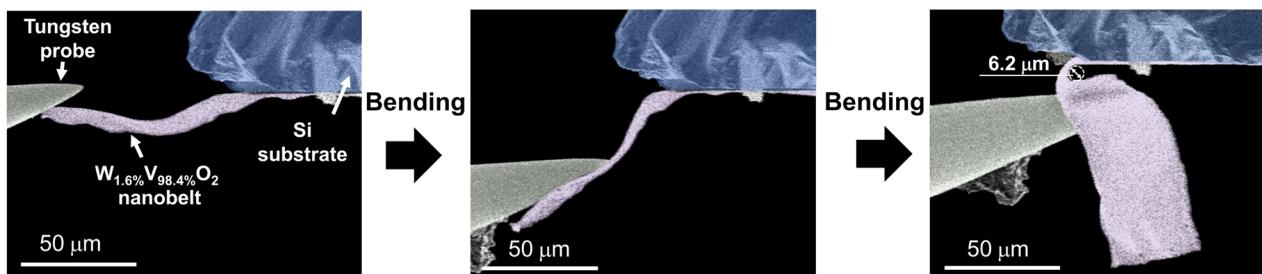
such as polyethylene terephthalate (PET, used below 150 °C), polyethylene naphthalate (PEN, used below 350 °C), thermoplastic polyurethane (TPU, used below 220 °C), and polydimethylsiloxane (PDMS, used below 350 °C).

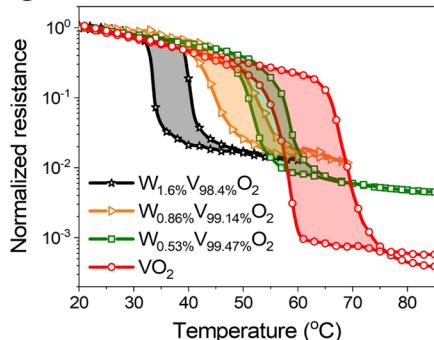
Although the low-temperature growth of VO_2 films is achieved by several methods including structural template growth,^{29,30} sol–gel synthesis,³¹ and high-power impulse magnetron sputtering,³² the relatively poor crystallinity of as-prepared VO_2 thin films is still a problem. Inspired by the transfer of van der Waals (vdW) materials, the technique for transferring freestanding oxide films to build devices has advanced rapidly in recent years because it effectively preserves the high quality of oxide films.^{33–41} For VO_2 , some inspiring transfer methods through sacrificial layer etching, vdW epitaxial transfer, and nanopinhole permeation-etching (NPE) have been reported.^{42–46} However, current research efforts concerning freestanding VO_2 have been predominantly

Received: October 23, 2024

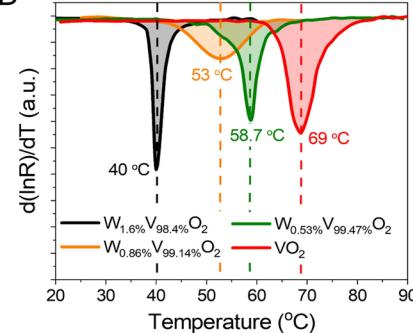

Revised: January 28, 2025

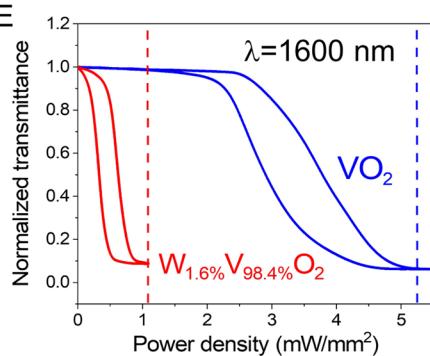
Accepted: January 30, 2025


Published: February 8, 2025


A

W-VO₂ films on quartz substratesFreestanding W-VO₂ films


B


C

D

E

Figure 1. (A) Optical images of various films: pure VO₂, W_{0.53%}V_{99.47%}O₂, W_{0.86%}V_{99.14%}O₂, and W_{1.6%}V_{98.4%}O₂, all grown on a one-inch quartz substrate (upper panel), with a scale bar of 1 cm. The lower panel displays the optical images of the same set of one-inch freestanding films—VO₂, W_{0.53%}V_{99.47%}O₂, W_{0.86%}V_{99.14%}O₂, and W_{1.6%}V_{98.4%}O₂—floating on water, also with a scale bar of 1 cm. (B) Scanning electron microscopy (SEM) images showing the bending of a W_{1.6%}V_{98.4%}O₂ nanobelt to a curvature of 0.33 μm^{-1} using a tungsten probe. (C) Resistance–temperature (R–T) curves for various freestanding W-VO₂ films transferred to silicon nitride frame. (D) Derivative logarithmic plots of resistances for various freestanding W-VO₂ films versus temperature. (E) Transmittance changes at a wavelength of 1600 nm for freestanding W_{1.6%}V_{98.4%}O₂/carbon nanotube (CNT) film and freestanding VO₂/CNT film under electrical stimulation.

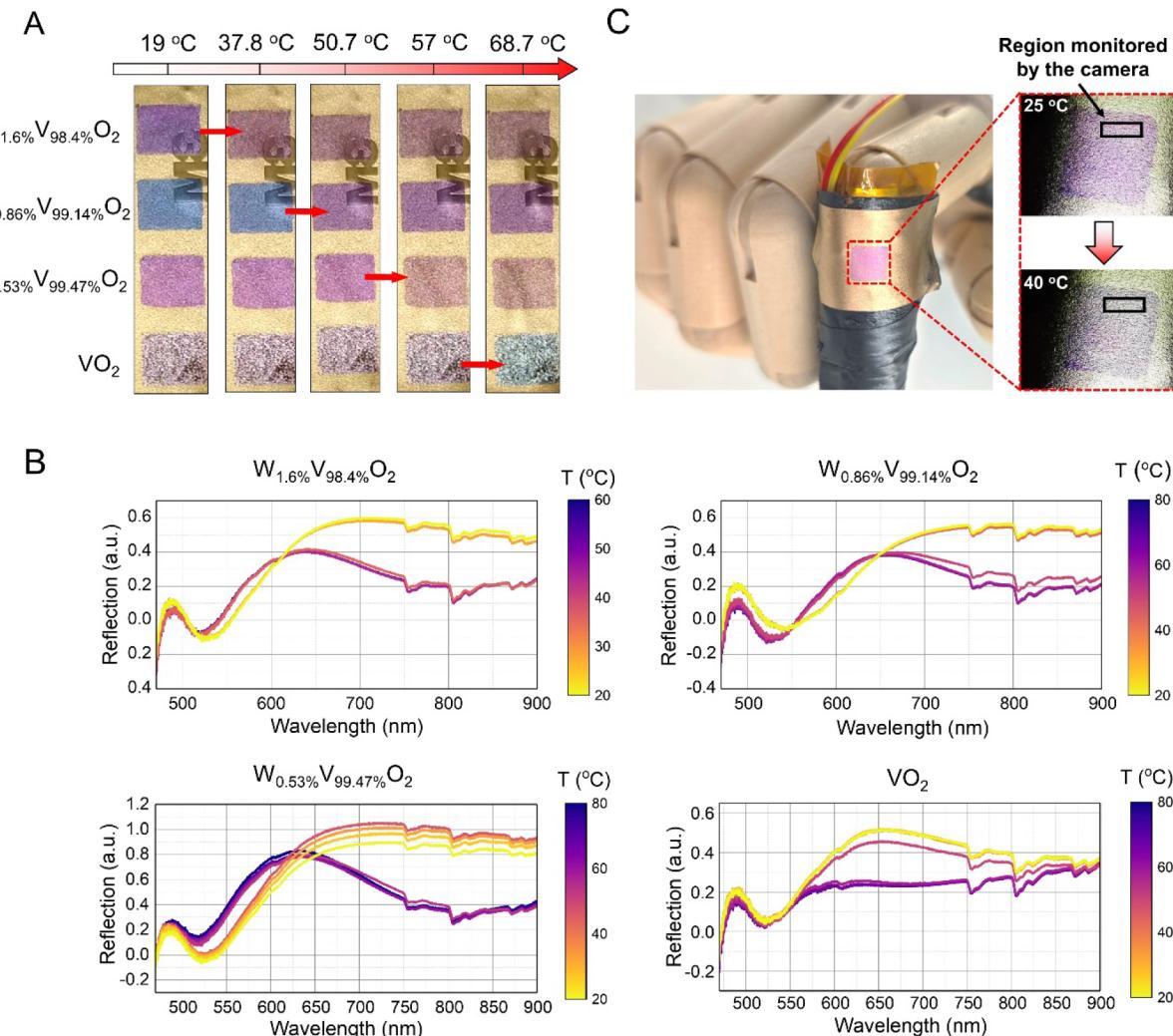
made for single-layer films, thereby merely delivering single-functional devices. Multiple transfer and integration of wafer-scale VO₂ films is essential, akin to the development of wafer-scale stacked vdW heterojunctions,^{47–50} but it is still very challenging. In addition to refining the transfer technique, it is also imperative to address the issue of the relatively high MIT temperature of VO₂, which results in high operational temperatures and large power consumption of devices. All of these challenges must be addressed for developing large-area, multifunctional VO₂-integrated devices.

In this work, we report a layer-by-layer transfer of wafer-scale tungsten-doped VO₂ (W-VO₂) films, which enables sequential

integration of the VO₂ films with low MIT temperatures (down to 40 °C) onto arbitrary substrates. The MIT temperature of the freestanding W-VO₂ films is well tuned by adjusting the amount of tungsten doping. By stacking multiple VO₂ films with different doped levels, a quasi-gradient-doped VO₂ architecture can be achieved, effectively broadening the MIT temperature window and reducing the hysteresis of VO₂. These free-standing VO₂ films can be integrated onto both solid and flexible substrates, as well as with other functional materials, finding a variety of applications in flexible temperature indicator strips, infrared camouflage

devices, nonreciprocal ultrafast light modulators, and smart photoactuators.

2. RESULTS AND DISCUSSION

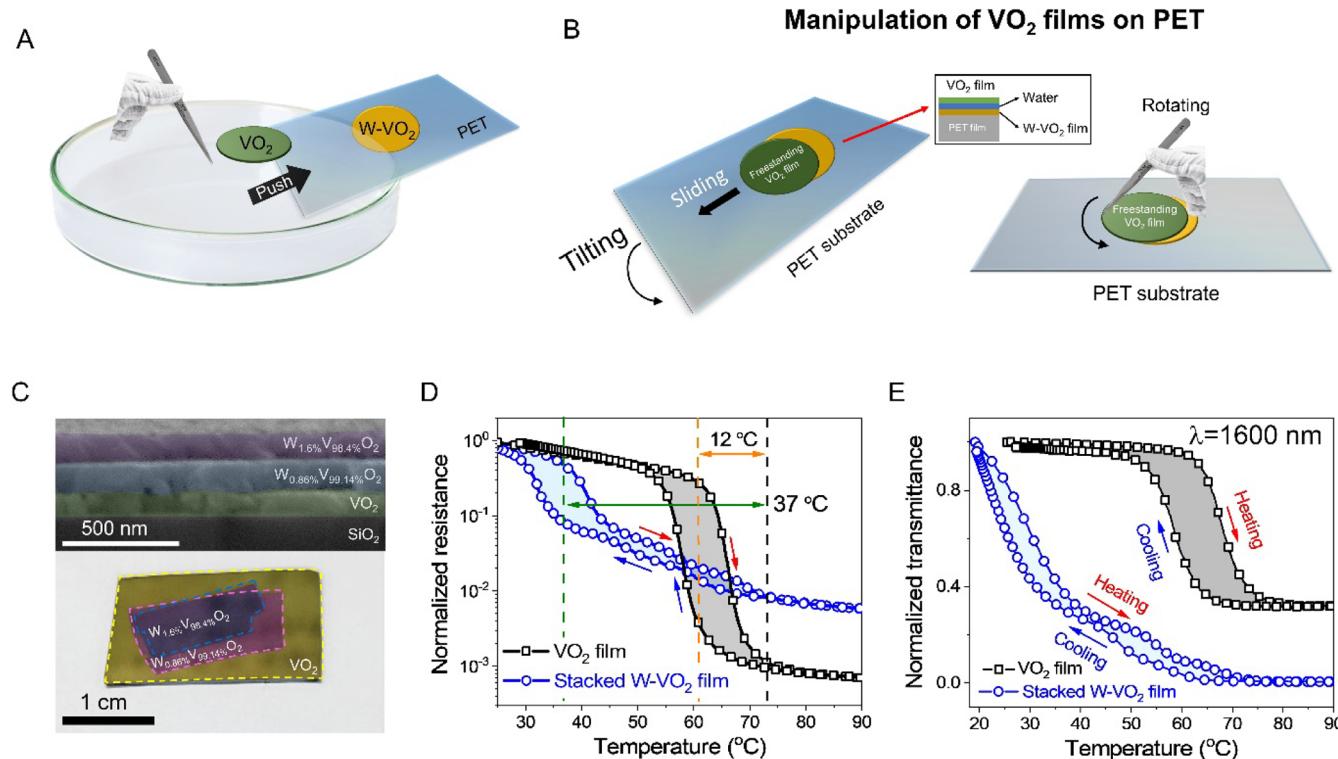

2.1. Preparation of Wafer-Scale Freestanding W-VO₂ Films. Wafer-scale W-VO₂ films with various levels of tungsten doping (Figure 1A) were deposited on SiO₂ substrates (quartz or SiO₂/Si) through reactive magnetic sputtering followed by a postannealing process, as detailed in the *Experimental Section*. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of the W-VO₂ film (Figure S1) reveal numerous nanopinholes within the film. Due to these nanopinholes, the entire W-VO₂ films could be released from the one-inch quartz substrates by using the NPE technique (Figure 1A). Specifically, the W-VO₂ film on the quartz substrate was immersed in a buffered oxide etchant (BOE, with a 5:1 volume ratio of 40% NH₄F to 49% HF) until it was almost fully separated from the substrate. As the interface between the W-VO₂ film and the substrate was etched from top to bottom, the wafer-scale W-VO₂ film could be detached from the substrate (quartz wafer with a diameter of 56 mm) within several minutes, achieving an area of \sim 14 cm² (Figure S2). The freestanding W-VO₂ film was then transferred from the BOE solution to water, enabling subsequent transfer to any arbitrary substrate (Movie S1). As demonstrated in Figure S3, the W-VO₂ film was successfully transferred to a PET substrate. The W-VO₂/PET film was easily bendable, showcasing its excellent flexibility (Movie S2). We studied the optical modulation performance on the W-VO₂/PET film both before and after subjecting it to extensive bending. During the tests, the two ends of the W-VO₂/PET film were fixed with clamps, one of which was attached to a movable stage. The film was bent by adjusting the stage until a bending strain of 5% was achieved (Figure S4A). As shown in Figure S4B, the optical modulation performance of the W-VO₂/PET film was not changed after the extensive mechanical bending. The sustainable bending strain of the W-VO₂/PET film was comparable to that reported in the literature (Table S1).

We measured the optical property of the W-VO₂/mica film after bending 10, 100, 1000, and 10,000 times (Figure S5). The modulation amplitude and MIT temperature of W-VO₂/mica at a wavelength of 1600 nm were almost constant even after bending 10,000 times, indicating the excellent mechanical stability of the freestanding W-VO₂ film. The mechanical properties of the freestanding W-VO₂ film were further examined using a micromanipulator mounted in the SEM. Freestanding W-VO₂ nanobelts were prepared through a direct-laser-writing method, as described in our previous work.⁵¹ One end of the W-VO₂ nanobelt was anchored to the Si substrate, while the other end was bent using the micromanipulator (see Figure 1B). The 70 nm-thick W-VO₂ nanobelt achieved a maximum bending curvature of 0.33 μ m⁻¹. Consequently, the maximum bending strain of the freestanding W-VO₂ film reached 1.1%, comparable to that of the freestanding VO₂ film.⁴³ This demonstrated that tungsten doping did not degrade the mechanical properties of the W-VO₂ film.

The MIT temperature of the freestanding W-VO₂ film could be changed by adjusting the atomic ratio of tungsten to vanadium elements. In this study, W-VO₂ films with different tungsten/vanadium atomic ratios were deposited on SiO₂ substrates using reactive sputtering of tungsten/vanadium

alloy targets. Specifically, freestanding W-VO₂ films with atomic ratios of W/V of 0/100, 0.53/99.47, 0.86/99.14, and 1.6/98.4 were prepared and analyzed. The atomic ratios were confirmed by using energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (Figure S6). We noted that the results given by X-ray photoelectron spectroscopy (XPS) were slightly different from those given by EDS. EDS and XPS were both semiquantitative testing methods and could only analyze the surface of a sample. In addition to errors introduced by testing methods, the accuracy of tungsten content was also affected by the homogeneity of the sample, which included both in-plane uniformity and differences between the surface and the bulk of the sample. Therefore, the test results from EDS and XPS provided only a rough estimate of the tungsten content and illustrated the trend of changes in tungsten content among differently doped samples. To investigate the effect of tungsten doping on electrical properties, the freestanding W-VO₂ films were transferred to silicon nitride frames and their resistance as a function of temperature was measured (Figure 1C). The derivative logarithmic plots of resistance versus temperature for these films (Figure 1D) allowed us to determine the MIT temperatures. Specifically, the MIT temperatures for the W-VO₂ films with W/V atomic ratios of 0/100, 0.53/99.47, 0.86/99.14, and 1.6/98.4 were found to be 69 °C, 58.7 °C, 53 °C, and 40 °C, respectively. This indicated that for each 1% increase in tungsten doping, the MIT temperature decreased by approximately 18.1 °C. This adjustment rate of MIT temperature was lower than that reported in some studies.^{52–54} When VO₂ was doped with W element, the reaction $2 V^{4+} + W^{4+} \rightarrow 2 V^{3+} + W^{6+}$ occurred, resulting in the formation of V³⁺-W⁶⁺ and V³⁺-V⁴⁺ pairs.⁵⁵ The appearance of V³⁺ in the system weakened the strong electron correlation, thus lowering the MIT temperature. In comparison, the doping effect of the pentavalent element was much weaker, half that of W. This was because the pentavalent element could only pair with one V³⁺. In VO₂, oxygen vacancies were prevalent that could interact with W⁶⁺, leading to the partial reduction of W⁶⁺ to W⁵⁺ for maintaining electrical neutrality.⁵⁶ Consequently, although the concentration of tungsten doping might be high, its effectiveness in modulating the MIT temperature was decreased. The resistance change ratios over different temperature ranges were measured: for VO₂ (2700 times from 20 to 90 °C), W_{0.53%}V_{99.47%}O₂ (230 times from 20 to 90 °C), W_{0.86%}V_{99.14%}O₂ (95 times from 20 to 70 °C), and W_{1.6%}V_{98.4%}O₂ (65 times from 20 to 50 °C). Comparing these results with those of W-VO₂ films grown on solid substrates (Table S2), we found that the phase-transition performance, in terms of electrical properties, of our freestanding W-VO₂ films is comparable to that of W-VO₂ films grown on solid substrates.

The X-ray diffraction (XRD) pattern of the freestanding W-VO₂ film transferred to a quartz substrate is presented in Figure S7A. The freestanding W-VO₂ film was oriented along the (011) plane of the VO₂ monoclinic phase, which matched the orientation of the W-VO₂ film grown directly on a quartz substrate. The temperature-dependent Raman spectra of the freestanding W-VO₂ film transferred to a quartz substrate were shown in Figure S7B. The intensity of the characteristic Raman peaks at 191 cm⁻¹, 221 cm⁻¹, 390 cm⁻¹, and 615 cm⁻¹ gradually decreased with an increasing temperature. These peaks disappeared when the temperature exceeded 38 °C, signifying a phase transition of the W-VO₂ film. The surface


Figure 2. (A) Color change of W-VO₂ films with increasing temperature. (B) Reflection spectra of W-VO₂/Au-coated vinyl tapes at various temperatures. (C) Optical image of the thermochromic W-VO₂ tape attached to one finger of an artificial hand. The area of the W_{1.6%}V_{98.4%}O₂ tape monitored by the camera was highlighted by the black square. The color change of the W_{1.6%}V_{98.4%}O₂ tape was automatically identified by the computer.

morphology of the freestanding W-VO₂ film was characterized by using atomic force microscopy (AFM). As shown in Figure S8, the surface roughness of the transferred W-VO₂ film was 2.4 nm, which was almost identical to the roughness of the W-VO₂ film grown on a quartz substrate (2.3 nm). Therefore, the process of releasing and transferring the W-VO₂ film did not affect its crystal structure or surface morphology. The XRD pattern, Raman spectroscopy, and AFM analyses confirmed that the crystal structure, phase-transition behavior, and surface morphology of freestanding W-VO₂ films remained intact after transfer, affirming the reliability of the release and transfer process.

VO₂ films were widely utilized in active optical modulators across a broad wavelength spectrum, ranging from visible light to THz waves.^{18,57} The temperature-driven working mechanism of these films implied that reducing the MIT temperature of a VO₂ film could significantly lower the power consumption of the optical modulator. To demonstrate the enhanced energy efficiency of W-VO₂ film-based optical modulators, we developed an electro-optical modulator using W-VO₂/CNT composite films (Figure S9A) and examined their electro-optical modulation properties. Two freestanding CNT films

were cross-stacked on a quartz frame, and a freestanding W-VO₂ film (~110 nm thick) was subsequently transferred onto the CNT film to form the W-VO₂/CNT composite. Conductive graphite glue was applied to both ends of the W-VO₂/CNT film to serve as electrodes. For comparison, a VO₂/CNT film was prepared by using the same method. Figure S9B presents the transmission spectra of the W-VO₂/CNT and VO₂/CNT films under electrical stimulus, covering wavelengths from 400 to 2500 nm. Following the MIT driven by the applied voltage, the transmittance of the VO₂/CNT film at 1600 nm decreased from 45.3% to 6.5%, while the transmittance of the W-VO₂/CNT film decreased from 48.4% to 11.5%.

We further measured the transmittance changes of freestanding W_{1.6%}V_{98.4%}O₂/CNT and VO₂/CNT films with increasing electrical power density at 1600 nm. As shown in Figures 1E and S10, the driving power required for the phase transition of the freestanding W_{1.6%}V_{98.4%}O₂/CNT film was approximately 1.1 mW/mm², which was substantially lower than that of the freestanding VO₂/CNT film (~5.2 mW/mm²). This indicated a significant reduction in power consumption for the W_{1.6%}V_{98.4%}O₂/CNT modulator com-

Figure 3. (A) Schematic illustration of the transferring and stacking process used to prepare a stacked W-VO_2 film. (B) Schematic representation showing the manipulation of the relative position and twist angle of the W-VO_2 film on a PET substrate. (C) Optical image of the stacked W-VO_2 film on a SiO_2/Si substrate. The top panel displayed an SEM image of the cross-section of the stacked W-VO_2 film. (D) R-T curves comparing the stacked W-VO_2 film with the VO_2 film. (E) Transmission-temperature curves for the stacked W-VO_2 film and the VO_2 film.

pared to the VO_2/CNT modulator. We also evaluated the transient response of the freestanding $\text{W}_{1.6}\text{V}_{98.4}\text{O}_2/\text{CNT}$ film (Figure S11). The response time was defined as the duration for the electrical signal to change from 90% to 10%. The response time for the $\text{W}_{1.6}\text{V}_{98.4}\text{O}_2/\text{CNT}$ film was approximately 32 ms, which was slightly longer than the response time of the VO_2/CNT film (~26 ms). The extended response time could be attributed to the smaller temperature difference between the $\text{W}_{1.6}\text{V}_{98.4}\text{O}_2/\text{CNT}$ film and the environment.

The MIT characteristic of the $\text{W}_{1.6}\text{V}_{98.4}\text{O}_2$ film altered both the optical transmission and the thermal emissivity (thermal radiation) of the film. As a result, our $\text{W}_{1.6}\text{V}_{98.4}\text{O}_2/\text{CNT}$ modulator had potential applications in infrared emissivity control and thermal coding, building on our previous research.⁵⁸ Currently, most approaches to thermal camouflage or thermal coding involved prepatterned designs that passively changed with environmental temperature (Table S3). However, these static, nonreconfigurable systems limited the versatility and potential applications of thermal coding. The high electrical conductivity and low thermal capacitance of the CNT film enabled active tuning of thermal radiation in the $\text{W-VO}_2/\text{CNT}$ film with low power consumption (see discussion in the Supporting Information). This capability allowed each film to act as a dynamic pixel in an active thermal coding system. The reconfigurable nature of the electrically addressable optical modulator array facilitated the generation of arbitrary patterns, greatly enhancing the flexibility and applicability of thermal coding technology across various fields.

2.2. Thermochromism of Flexible W-VO_2 Films.

To better demonstrate the phase-transition properties and

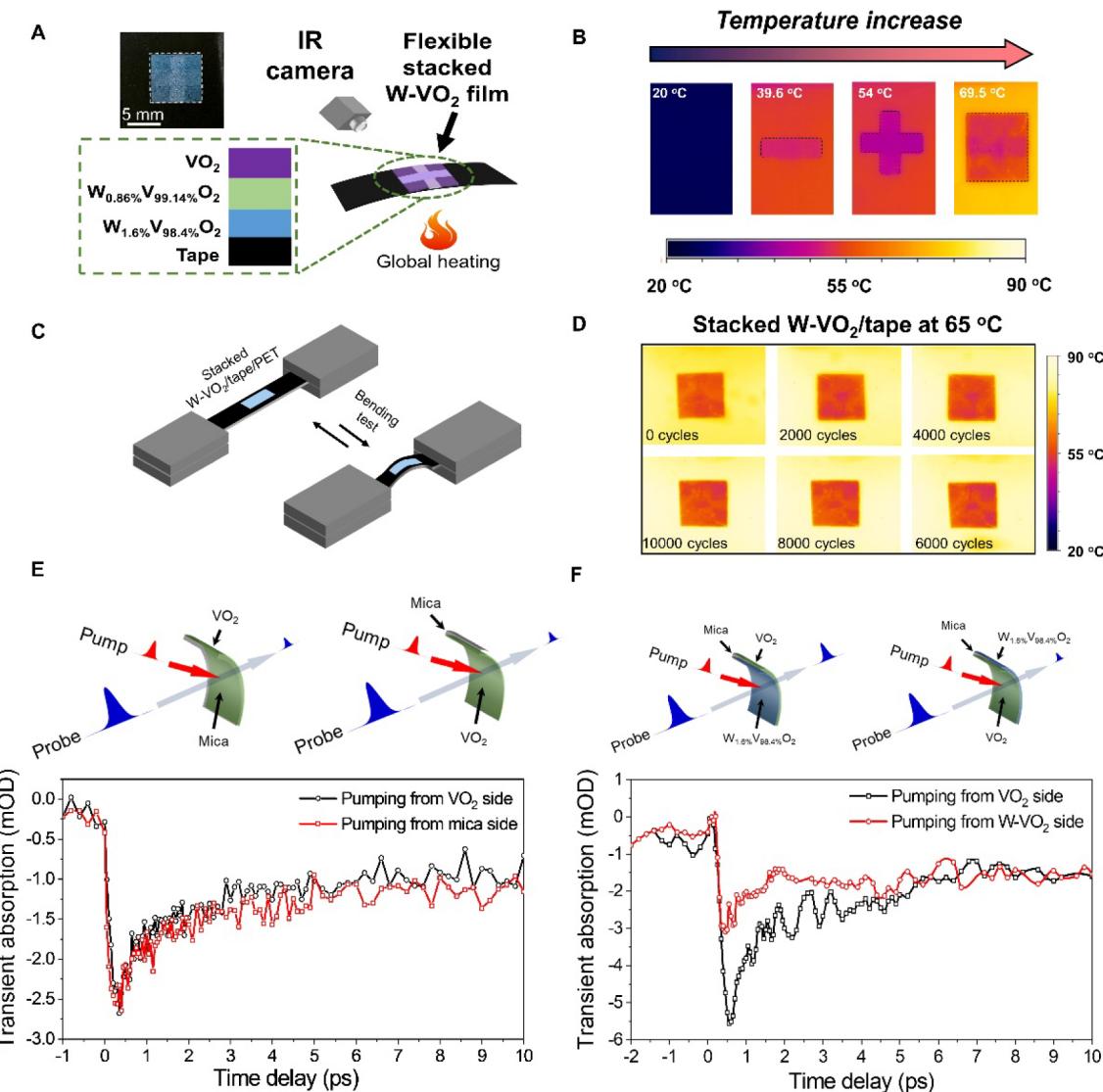
substrate adaptability of freestanding W-VO_2 films, we transferred the VO_2 film, $\text{W}_{0.53}\text{V}_{99.47}\text{O}_2$ film, $\text{W}_{0.86}\text{V}_{99.14}\text{O}_2$ film, and $\text{W}_{1.6}\text{V}_{98.4}\text{O}_2$ film onto 3 MTM vinyl tape coated with a ~60 nm gold film, arranged from top to bottom in sequence. The four regions coated with these different W-VO_2 films displayed distinct colors. The thicknesses of VO_2 , $\text{W}_{0.53}\text{V}_{99.47}\text{O}_2$, $\text{W}_{0.86}\text{V}_{99.14}\text{O}_2$, and $\text{W}_{1.6}\text{V}_{98.4}\text{O}_2$ films were 225, 75, 115, and 120 nm, respectively. The observed color differences could be attributed to two main factors: the varying thicknesses of the W-VO_2 films and the changes in the refractive index induced by element doping. The different film thicknesses created varying interference effects, while the doping altered the refractive index, contributing to the observed color variations.

As shown in Figure 2A, the W-VO_2 films on the tape exhibited color changes at specific temperatures: 37.8 °C for $\text{W}_{1.6}\text{V}_{98.4}\text{O}_2$, 50.7 °C for $\text{W}_{0.53}\text{V}_{99.47}\text{O}_2$, 57 °C for $\text{W}_{0.86}\text{V}_{99.14}\text{O}_2$, and 68.7 °C for VO_2 . These color change temperatures corresponded closely with the MIT temperatures of the W-VO_2 films as determined by the R-T curves, confirming that the observed color transitions in Figure 2A were due to the MIT of the W-VO_2 films. Furthermore, we measured the temperature-dependent optical reflection spectra of these W-VO_2 films on Au-coated vinyl tape (Figure 2B). At the MIT point, the reflection spectrum valleys shifted toward shorter wavelengths. For example, in the $\text{W}_{1.6}\text{V}_{98.4}\text{O}_2$ film region, as the temperature exceeded 40 °C, the valley in the reflection spectrum shifted from 488 to 387 nm. This shift in the reflection spectra could be attributed to changes in the refractive index caused by MIT of the W-VO_2 films.

Thanks to its reversible thermochromic properties, W-VO₂ tapes could be employed as flexible temperature-indicating strips in wearable systems for monitoring temperature changes. To illustrate this application, we developed an automatic high-temperature alarm system using thermochromic W-VO₂ tape, demonstrated with a machine vision system. As shown in Figure 2C, a W_{1.6%}V_{98.4%}O₂ tape was attached to the finger of an artificial hand, which was heated using a polyimide heating plate. During the heating process, a camera continuously monitored the W_{1.6%}V_{98.4%}O₂ tape. When the temperature exceeded 40 °C, the tape's color shifted from bright purple to dark purple (Movie S3). This color change was automatically detected by the camera, triggering a high-temperature warning on the computer. The alarm temperature of the W-VO₂ tape could be fine-tuned by adjusting the tungsten-doped ratio of the W-VO₂ film. Unlike conventional thermocouples, the thermochromic W-VO₂ tape could conform more seamlessly to complex surfaces and cover a larger area. This meant that an overtemperature condition (e.g., 40 °C in the case of the W_{1.6%}V_{98.4%}O₂ tape shown in Figure 2C) anywhere within the covered area was immediately indicated by a color change.

2.3. Wafer-Scale Stacking of Freestanding W-VO₂ Films. Owing to the freestanding nature of W-VO₂ films, we were able to create multilayer W-VO₂ films using a layer-by-layer stacking technique (Figure 3A). Since no contaminants such as organic films were introduced during the transfer process, the surface of the freestanding W-VO₂ film was clean. Therefore, layer-by-layer stacking of freestanding W-VO₂ films was conducive to constructing vertically integrated W-VO₂ devices. First, a freestanding W-VO₂ (or VO₂) film was transferred onto a PET substrate. Once the W-VO₂/PET film had dried, it was subjected to an O₂ plasma treatment for 10 s to enhance its hydrophilicity. After this treatment, a second VO₂ (or W-VO₂) film was transferred onto the W-VO₂/PET substrate. The two-layer stacked W-VO₂ film was securely attached to the PET substrate and allowed to dry thoroughly in the air. As shown in Figure S13, a W_{1.6%}V_{98.4%}O₂ film, with an approximate area of 10 cm², was successfully stacked onto a VO₂/PET substrate using this layer-by-layer stacking method.

When we initially transferred the VO₂ film onto the W-VO₂/PET substrate from water, the water beneath the VO₂ layer acted as a lubricant, creating a separation between the VO₂ layer and the W-VO₂/PET substrate. This allowed the VO₂ layer to slide on the W-VO₂/PET substrate when the PET substrate was tilted. Consequently, we could control the relative position between the adjacent VO₂ layers by manipulating the PET substrate (see Movie S4). Additionally, we adjusted the twist angle between the adjacent VO₂ layers (see Movie S5). As shown in Figures 3B and S14, the VO₂ layer shifted to the left and upward sides of the W-VO₂ layer when the PET substrate was tilted in those respective directions. Furthermore, we rotated the top VO₂ layer by 35° relative to the bottom W-VO₂ layer, as demonstrated in Figures 3B and S14. Utilizing this wafer-scale transfer and layer-by-layer stacking technique, we successfully prepared a three-layer stacked W-VO₂/PET film with a W_{0.53%}V_{99.47%}O₂/VO₂/W_{0.53%}V_{99.47%}O₂ structure (Figure S14).


The sharp phase transition around the MIT temperature enabled VO₂ films to switch readily between insulating and metallic states.⁵⁹ However, maintaining a state between insulator and metal poses a significant challenge.⁹ At the precise MIT point, VO₂ films became highly sensitive to external stimuli, a sensitivity that substantially diminished

when the temperature deviated from the MIT point. Achieving accurate temperature control near the MIT point requires a sophisticated temperature control system, which demanded high power consumption and added to the device complexity. Therefore, broadening the MIT region of the VO₂ films was highly desirable. Tang et al. had shown that multilayer W-VO₂ films with varying tungsten-doped concentrations, deposited on a glass substrate, could achieve an extended MIT region.⁹ However, this direct-growth method was unsuitable for nonheat-resistant flexible substrates. In our work, we employed a layer-by-layer stacking technique to construct a gradient tungsten-doped VO₂ film, which offers significant advantages in terms of substrate adaptability compared with the direct-growth method.

As shown in Figure 3C, we transferred W_{0.86%}V_{99.14%}O₂ and W_{1.6%}V_{98.4%}O₂ onto a VO₂/SiO₂/Si substrate to construct a gradient tungsten-doped VO₂ film. Compared with flexible substrates such as PI and PET films, the SiO₂/Si substrate exhibited higher thermal conductivity, facilitating temperature equilibrium during changes. Therefore, the preparation of the stacked W-VO₂ film on the solid substrate facilitated precise measurement of its electrical property under various temperatures. The cross-sectional image of the stacked W-VO₂ film, shown in the upper panel of Figure 3C, revealed the fine interfaces between the three layers.

We measured the resistance–temperature (R–T) curve of the stacked W-VO₂ film. As shown in Figure 3D, the MIT width of the stacked W-VO₂ film was broadened to approximately 37 °C, compared to the relatively narrow MIT width (~12 °C) of the VO₂ film. Moreover, the stacked W-VO₂ film exhibited a significantly reduced hysteresis. For instance, at 60 °C, the ratio of $R_{\text{heating}}/R_{\text{cooling}}$ for the VO₂ film was ~60, while for the stacked W-VO₂ film it was just 1.13. The resistance change ratio from 20 to 90 °C for the stacked W-VO₂ film exceeded 2 orders of magnitude, comparable to that achieved using the direct-growth method (Table S2). We also measured the transmission-temperature curve of the stacked W-VO₂ film at a wavelength of 1600 nm (Figure 3E). This measurement further confirmed that the MIT region of the stacked W-VO₂ film was significantly broader than that of the VO₂ film with much smaller hysteresis. These properties made the stacked W-VO₂ film an excellent candidate for use in temperature-sensitive applications such as uncooled thermal detectors,⁶⁰ benefiting from both its broad MIT range and minimal hysteresis.

2.4. Multistate Infrared Camouflage Films and Nonreciprocal Ultrafast Light Modulators. To demonstrate the potential applications of stacked W-VO₂ films in the optical field, we developed both infrared camouflage devices based on three-layer stacked W-VO₂ films and nonreciprocal ultrafast light modulators utilizing VO₂/Mica/W_{1.6%}V_{98.4%}O₂ films. Infrared camouflage, a technique for deceiving infrared cameras by altering an object's thermal radiation, holds significant importance in various military applications.^{9,61} According to the Stefan–Boltzmann law, an object's thermal radiation was determined by its emissivity and temperature. Thus, adjusting emissivity provided an efficient method to manipulate an object's thermal radiation, achieving infrared camouflage. MIT in VO₂ films led to significant changes in emissivity, making these films ideal for infrared camouflage. Additionally, advances in tungsten doping and multiple lithography techniques have evolved VO₂-based infrared camouflage devices from dual-state to multistate capabilities.⁶²

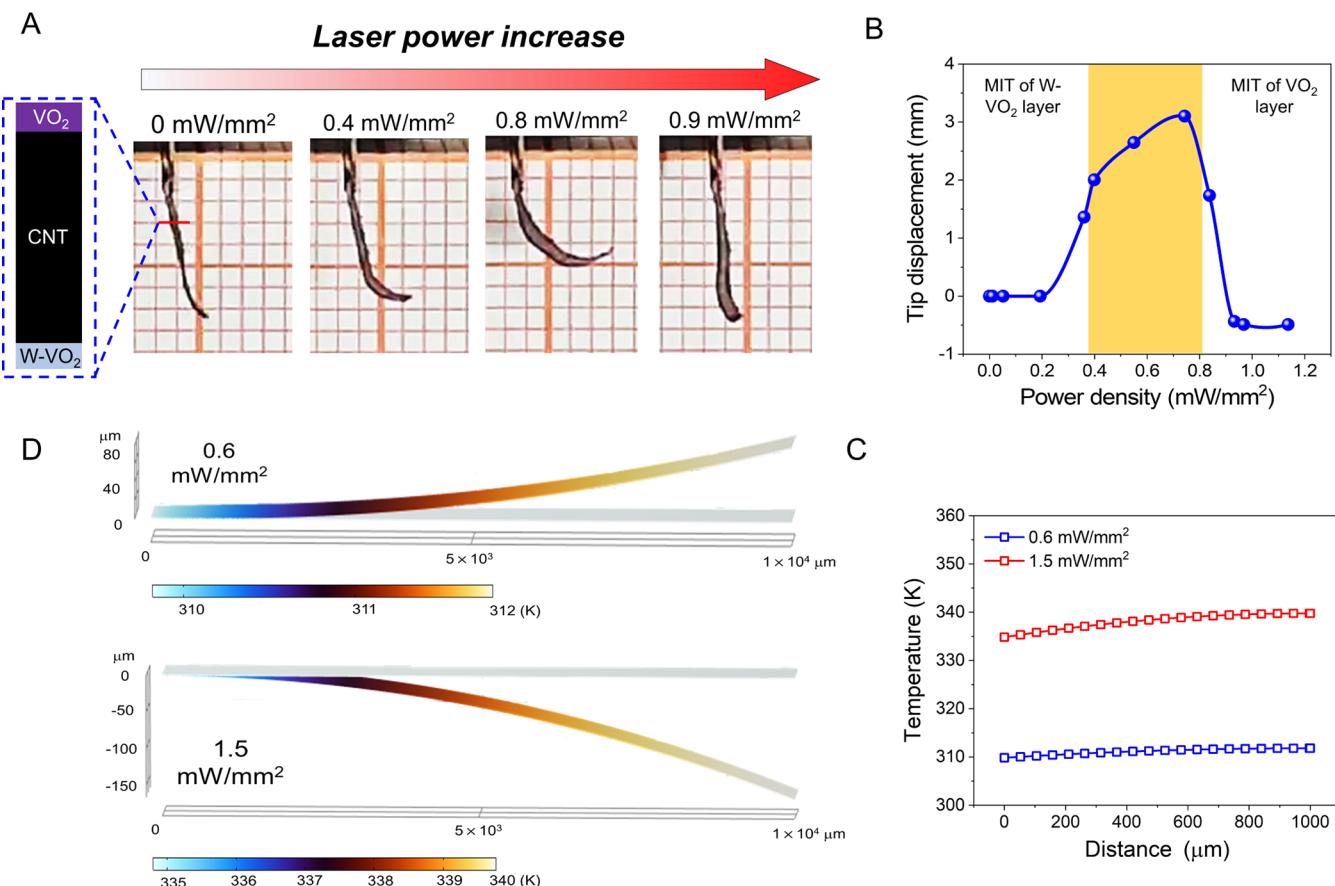


Figure 4. (A) Schematic illustration of infrared camouflage devices based on the three-layer stacked W-VO₂ film. The inset displays an optical image of the three-layer stacked W-VO₂ film transferred onto black vinyl tape. (B) Infrared images depicting the changes in temperature for the three-layer stacked W-VO₂ film. (C) Schematic illustration of the bending test for the stacked W-VO₂/tape. (D) Infrared images of the stacked W-VO₂/tape at 65 °C after bending cycles of 0, 2000, 4000, 6000, 8000, and 10,000 under a curvature of 57 m⁻¹. (E) Transient absorption spectra of the VO₂/mica film, obtained by pumping ($\lambda_{\text{pump}} = 800 \text{ nm}$) and probing ($\lambda_{\text{probe}} = 1178 \text{ nm}$) from both the VO₂ and mica sides. (F) Transient absorption spectra of the VO₂/mica/W_{1.6%}V_{98.4%}O₂ film, obtained by pumping ($\lambda_{\text{pump}} = 800 \text{ nm}$) and probing ($\lambda_{\text{probe}} = 1178 \text{ nm}$) from both the VO₂ side and the W_{1.6%}V_{98.4%}O₂ side with a fluence of 0.9 $\mu\text{J}/\text{mm}^2$.

Infrared camouflage devices typically required flexible covering for the object's surface, making flexibility a crucial characteristic. The high-temperature deposition (>450 °C) of VO₂ films had limited the preparation of VO₂ infrared camouflage devices to solid substrates or a few high-temperature-resistant flexible ones. In this study, we successfully transferred and layered three W-VO₂ films (W_{1.6%}V_{98.4%}O₂ film, W_{0.86%}V_{99.14%}O₂ film, and VO₂ film) onto 3MTM vinyl tape, creating a temperature-responsive, flexible, polymorphic infrared camouflage device. As illustrated in Figures 4A and S15, we first placed a rectangular W_{1.6%}V_{98.4%}O₂ strip (7 × 2 mm²) at the bottom. This was followed by layering a rectangular W_{0.86%}V_{99.14%}O₂ strip (7 × 2 mm²) in the middle, and finally, covering the top surface with a square VO₂ film (7 × 7 mm²). Using an infrared camera, we observed infrared imaging of the stacked W-VO₂ films. At room temperature, due to the emissivity of the stacked W-VO₂ films matching the

surrounding environment, no image was visible on the infrared camera (Figure 4B and Movie S6). When the temperature exceeded 39.6 °C, the phase transition of the W_{1.6%}V_{98.4%}O₂ strip reduced its emissivity, creating an infrared temperature difference between the strips and its surroundings. As the temperature climbed to 54 °C, the phase transition of the W_{0.86%}V_{99.14%}O₂ film occurred, causing the vertically oriented W_{0.86%}V_{99.14%}O₂ strip to appear in the infrared image. This formed a cross-pattern with the existing horizontally oriented W_{1.6%}V_{98.4%}O₂ strip. Finally, when the temperature rose beyond 69.5 °C, the square VO₂ film became visible, masking the underlying cross structure of the W_{1.6%}V_{98.4%}O₂ and W_{0.86%}V_{99.14%}O₂ strips.

The infrared images of the stacked W-VO₂/tape at 65 °C were captured after subjecting the sample to 0, 2000, 4000, 6000, 8000, and 10,000 bending cycles under a curvature of 57 m⁻¹ (Figure 4C). Throughout the bending test, the stacked W-

Figure 5. (A) Optical images of the $W_{1.6\%}V_{98.4\%}O_2/CNT/VO_2$ photoactuator under laser irradiation with different laser power density. (B) Deformation of the $W_{1.6\%}V_{98.4\%}O_2/CNT/VO_2$ photoactuator under different laser power density. (C) Simulated temperature distribution and (D) deformation of the $W_{1.6\%}V_{98.4\%}O_2/CNT/VO_2$ photoactuator under the laser irradiation with the power density of 0.6 mW/mm^2 and 1.5 mW/mm^2 .

VO_2 /tape was securely attached to a PET film. Remarkably, the infrared images taken at various bending intervals showed minimal differences, suggesting that the phase-transition properties of the stacked $W\text{-}VO_2$ film remained consistent (Figure 4D). This consistent performance underscored the excellent flexibility of the stacked $W\text{-}VO_2$ film, making it suitable for covering complex surfaces and thereby meeting the practical demands of infrared camouflage devices.

VO_2 was a potential candidate for an ultrafast optical switch due to its ability to undergo an ultrafast MIT when excited by femtosecond laser pulses.^{63,64} When operating in transmission mode and the substrate was transparent to the pumping light, the ultrafast photoresponse of VO_2 was always reciprocal. For instance, we measured the VO_2 /mica ultrafast photoresponse characteristics using a pump–probe system, as shown in Figure S16. The transient absorption (TA) spectrum by pumping from the VO_2 side was nearly identical to that pumped from the mica side (Figure 4E). Figure 4F shows transient absorption spectra of VO_2 /mica/ $W_{1.6\%}V_{98.4\%}O_2$ pumped from the VO_2 side and from the $W_{1.6\%}V_{98.4\%}O_2$ side. In Figure 4F, we found that the TA spectrum by pumping from the VO_2 side (TA_{VO₂}) differed from that pumped from the $W_{1.6\%}V_{98.4\%}O_2$ side (TA_{W-VO₂}) under the fluence of $0.9\text{ }\mu\text{J/mm}^2$. Specifically, the extinction of TA_{VO₂} was 1.8 times higher than that of TA_{W-VO₂}, allowing for a greater modulation depth when pumping from the VO_2 side. We normalized the spectra of TA_{VO₂} and TA_{W-VO₂} and compared the

recovery times of the VO_2 film and the $W_{1.6\%}V_{98.4\%}O_2$ film (Figure S17). Before 2 ps, the dynamic processes experienced by the VO_2 film and the $W_{1.6\%}V_{98.4\%}O_2$ film were almost identical. In contrast, after 2 ps, the signal of TA_{VO₂} continued to slowly decrease and returned to the initial state after ~ 40 ps. In contrast, the signal of TA_{W-VO₂} remained almost unchanged after two picoseconds. This was because the MIT temperature of the $W_{1.6\%}V_{98.4\%}O_2$ film was only $40\text{ }^\circ\text{C}$, and laser irradiation increases the film's temperature, preventing the signal of TA_{W-VO₂} from fully recovering to its initial state.

2.5. Photoactuator with “Band-Pass” Property. VO_2 was a promising material for creating high-performance photoactuators because it undergoes a significant structural phase change when exposed to light and is compatible with strong light-absorbing materials like CNTs.^{22,65} When stimulated by light, VO_2 -based actuators bend toward the VO_2 side due to the shrinkage of VO_2 along its c_R axis. After the structural change of VO_2 , the deformation of the VO_2 -based actuators becomes much smaller, even with increased light power. Light with power higher than the actuator's triggering threshold can pass through when used as mechanical light modulators, such as in smart curtains. However, if the light is too strong, the smart curtain should limit the light that passes spontaneously for protection.

Herein, we have developed a photoactuator using a $W_{1.6\%}V_{98.4\%}O_2/CNT/VO_2$ film as the base. The $W\text{-}VO_2$ film

(~120 nm) and VO_2 film (~120 nm) were transferred onto the front and back sides of the CNT film, which had a thickness of approximately 1.5 μm . The photoresponsive behavior of the rectangular $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{CNT}/\text{VO}_2$ film is shown in Figure 5A,B. When the laser power exceeded 0.2 mW/mm², the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{CNT}/\text{VO}_2$ film bent sharply toward the W- VO_2 side due to the MIT of W- VO_2 , resulting in an increase in tip displacement from 0 mm to 2 mm. As the laser power increased from 0.4 to 0.8 mW/mm², the slope of the displacement versus the laser power decreased significantly, signifying the completion of the phase transition of W- VO_2 . At a laser power of 0.8 mW/mm², the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{CNT}/\text{VO}_2$ film bent toward the VO_2 side due to the MIT of VO_2 and almost returned to its original state. We conducted a finite element simulation to model the deformation of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{CNT}/\text{VO}_2$ film under light stimuli (see Figure S18 for detailed simulation method and parameters). As shown in Figure 5C, when the irradiated light power was 0.6 mW/mm², the maximum temperature of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{CNT}/\text{VO}_2$ film reached 312 K. This temperature increase triggered the MIT of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ layer, causing the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{CNT}/\text{VO}_2$ film to bend toward the W- VO_2 side (Figure 5D). As the light power rose to 1.5 mW/mm², the maximum temperature of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{CNT}/\text{VO}_2$ film increased to 340 K (Figure 5C), inducing the MIT of the VO_2 layer and resulting in the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{CNT}/\text{VO}_2$ film bending toward the VO_2 side (Figure 5D).

3. CONCLUSION

We have successfully developed wafer-scale freestanding W- VO_2 films with tailored phase-transition temperatures. By varying the tungsten-doped concentrations, we could effectively fine-tune the phase-transition properties of the VO_2 film. These freestanding W- VO_2 films could be seamlessly transferred to any flexible substrate, maintaining excellent phase-transition performance in both optical and electrical characteristics. Our research demonstrated that flexible W- VO_2 films could serve as flexible temperature-indicating strips, multistate infrared camouflage devices, nonreciprocal ultrafast light modulators, and smart photoactuators. The potential applications of freestanding W- VO_2 films were vast and largely unexplored, opening opportunities for their integration with other functional materials to create innovative solutions. Further investigation into the diverse applications of freestanding W- VO_2 films was highly encouraged to unlock their full potential.

4. EXPERIMENTAL METHOD AND MATERIAL CHARACTERIZATION

4.1. Synthesis of W- VO_2 Films. W- VO_x films were deposited on SiO_2 substrates (quartz or SiO_2/Si substrates) via reactive magnetron sputtering. Sputtering was conducted in a flowing gas mixture with a flow rate of 50 standard cubic centimeter per minute (sccm) (31–33 sccm of Ar and 17–19 sccm of 96% Ar/4% O_2 depending on the environmental humidity and temperature). The sputtering pressure was 0.6 Pa, and the sputtering power was 55 W. The thickness of the W- VO_x film was controlled by the sputtering time. The W- VO_x film was annealed at a temperature of 450 °C for 10 min in a low-pressure oxygen atmosphere (4.5 Pa).

4.2. Preparation of $\text{VO}_2/\text{mica}/\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ Films and $\text{VO}_2/\text{CNT}/\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ Films. Freestanding VO_2 films and

freestanding $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ films were prepared by the NPE method. Then, the VO_2 film was transferred onto one side of the mica film. After the VO_2/mica film was dried, the freestanding $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film was transferred onto the other side of the mica film. The preparation of the $\text{VO}_2/\text{CNT}/\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film was very similar to that of the $\text{VO}_2/\text{mica}/\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film. Freestanding VO_2 films and freestanding $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ films were prepared using the NPE method. Then, the VO_2 film was transferred from water onto one side of the CNT film. The CNT film was treated with oxygen plasma to enhance its hydrophilicity. After the VO_2/CNT film was dried, the freestanding $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film was transferred onto the other side of the CNT film.

4.3. Material Characterization and Performance Testing

SEM images were taken using a JEOL JSM-6510 scanning electron microscope and an FEI Nova 450 scanning electron microscope. TEM images were taken using an FEI Tecnai F20 transmission electron microscope. XPS measurements were performed using a Thermo Scientific™ ESCALAB 250Xi. XRD measurements were performed using a Rigaku Smartlab. Raman spectroscopy and AFM measurements were performed by using the WITec alpha 300 system. The performance of the VO_2/CNT electro-optical modulator was measured using a spectrometer (Hitachi U-4100). The R-T curves of the VO_2 films were measured using a probe station (Cascade M150), a homemade temperature-controlling system, and a source meter (Keysight B2902A). The reflection spectra of thermochromic W- VO_2 tapes were measured using a homemade optical reflection measuring system comprising a halogen lamp (HL2000), an optical spectrometer (Ocean optics USB4000), and a temperature controller (Lakeshore 335). The infrared images of the stacked W- VO_2 film were taken by an infrared camera (Optris 640).

ASSOCIATED CONTENT

Data Availability Statement

All the data used in this article and Supporting Information are provided, and any data deemed relevant can be obtained from the corresponding authors.

SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acsnano.4c15059>.

SEM image of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film grown on a quartz substrate; TEM image of the freestanding $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film; electron diffraction pattern of the freestanding $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film; optical image of a freestanding $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film floating on water; optical image of a $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film transferred onto a PET substrate; Optical image of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{PET}$ film with a curvature of 1/0.95 mm⁻¹; transmittance of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{PET}$ film, both before and after the bending test; comparison of bending strain across various devices utilizing (doped) VO_2 ; optical image of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{mica}$ film; transmittances of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{mica}$ film with different temperatures; modulation amplitude and MIT temperature of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2/\text{mica}$ film as a function of the number of bending cycles; XPS of W- VO_2 films; comparison of the resistance change ratio between freestanding W- VO_2 films and W- VO_2 films grown on solid substrates; XRD and Raman spectra of the $\text{W}_{1.6\%}\text{V}_{98.4\%}\text{O}_2$ film; optical and AFM images of the freestanding

$W_{1.6\%}V_{98.4\%}O_2$ film transferred onto a quartz substrate; optical and AFM images of the $W_{1.6\%}V_{98.4\%}O_2$ film grown on a quartz substrate; optical image and transmittance of the freestanding $W_{1.6\%}V_{98.4\%}O_2/CNT$ film; simulated temperature distribution image of a freestanding VO_2/CNT film and a $W-VO_2/CNT$ /quartz; schematic diagram of the electro-optical measurement system and transient response of the $W-VO_2/CNT$ film and the VO_2/CNT film; comparison of the thermal camouflage devices using (doped) VO_2 ; schematic diagram for reducing maintenance energy through the hysteresis effect of VO_2 ; optical image of the $W_{1.6\%}V_{98.4\%}O_2/VO_2/PET$ film; optical images of manipulating $W-VO_2$ films' position and the three-layer stacked $W-VO_2/PET$ film with a $W_{0.53\%}V_{99.47\%}O_2/VO_2/W_{0.53\%}V_{99.47\%}O_2$ structure; schematic diagram for patterned stacking of $W-VO_2$ films; schematic diagram of the pump-probe system; normalized transient absorption spectra of the $VO_2/mica/W_{1.6\%}V_{98.4\%}O_2$ film; geometrical model of the $W_{1.6\%}V_{98.4\%}O_2/CNT/VO_2$ film; and material properties used in the photo-actuating simulation of the $W_{1.6\%}V_{98.4\%}O_2/CNT/VO_2$ film (PDF)

Movie 1: Releasing a $W-VO_2$ film using NPE technique and transferring a freestanding $W-VO_2$ film from water to PET film (MP4)

Movie 2: Freestanding VO_2 and $W-VO_2$ films on PET films (MP4)

Movie 3: Automatic recognition of thermochromism of flexible $W-VO_2$ films (MP4)

Movie 4: Manipulating freestanding $W-VO_2$ film on PET film (MP4)

Movie 5: Rotating freestanding $W-VO_2$ film on PET film (MP4)

Movie 6: Multistate infrared camouflage (MP4)

Thermal simulation file 1 (ZIP)

Thermal simulation file 2 (ZIP)

AUTHOR INFORMATION

Corresponding Authors

He Ma – Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China; orcid.org/0000-0002-1976-2641; Email: mahe_beijing@bjut.edu.cn

Kai Liu – State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China; orcid.org/0000-0002-0638-5189; Email: liuk@tsinghua.edu.cn

Xinping Zhang – Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China; orcid.org/0000-0001-6534-0004; Email: zhangxinping@bjut.edu.cn

Authors

Yuan Li – Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China

Run Shi – State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering,

Tsinghua University, Beijing 100084, P.R. China;

orcid.org/0000-0002-3214-4661

Yonghuang Wu – State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China

Shifeng Feng – Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China

Yulan Fu – Institute of Information Photonics Technology and School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P.R. China; orcid.org/0000-0002-1705-4246

Yuanqi Wei – State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, P.R. China

Xuzhe Zhao – Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China

Kaichen Dong – Tsinghua-Berkeley Shenzhen Institute, Institute of Data and Information, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China; orcid.org/0000-0001-5334-4243

Kaili Jiang – State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, P.R. China

Complete contact information is available at:

<https://pubs.acs.org/10.1021/acsnano.4c15059>

Author Contributions

H.M., X.P.Z., and K.L. conceived the project. Y.L. prepared tungsten-doped VO_2 films and multilayer stacked $W-VO_2$ films, and measured the electrical, optical, and mechanical properties of the films. Y.Q.W., K.L.J., and H.M. measured the mechanical properties of $W-VO_2$ films using in situ electron microscopy. Y.L., R.S., and Y.H.W. measured the infrared property of the $W-VO_2$ film. S.F.F. and Y.L.F. measured the transient absorption spectra. Y.L. measured the actuation performance of the photoactuator. H.M. and Y.L. wrote the manuscript. K.L., K.C.D., and X.P.Z. revised the manuscript. All authors discussed the manuscript and provided suggestions for revision.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

H.M. acknowledges support from the National Natural Science Foundation of China (Grant No. 52272286), Beijing Natural Science Foundation (Grant No. Z2006E01202301), and Beijing Nova Program (No. Z2011000682011). H.M. and K.D. acknowledge support from the National Key R&D Program of China (Grant No. 2023YFB3208700). X.Z. acknowledges support from the National Natural Science Foundation of China (Grant No. 61735002). K.L. acknowledges support from the Basic Science Center Project of NSFC (Grant No. 52388201) and the National Natural Science Foundation of China (Grant No. 52272041).

REFERENCES

(1) Li, S.; Tian, M.; Gao, Q.; Wang, M.; Li, T.; Hu, Q.; Li, X.; Wu, Y. Nanometre-thin indium tin oxide for advanced high-performance electronics. *Nat. Mater.* **2019**, *18* (10), 1091.

(2) Shin, J.; Jeong, B.; Kim, J.; Nam, V. B.; Yoon, Y.; Jung, J.; Hong, S.; Lee, H.; Eom, H.; Yeo, J. Sensitive wearable temperature sensor with seamless monolithic integration. *Adv. Mater.* **2020**, *32* (2), 1905527.

(3) Brousse, K.; Pinaud, S.; Nguyen, S.; Fazzini, P.-F.; Makarem, R.; Josse, C.; Thimont, Y.; Chaudret, B.; Taberna, P.-L.; Respaud, M.; et al. Facile and scalable preparation of ruthenium oxide-based flexible micro-supercapacitors. *Adv. Energy Mater.* **2020**, *10* (6), 1903136.

(4) Zheng, L.; Teng, F.; Ye, X.; Zheng, H.; Fang, X. Photo/electrochemical applications of metal sulfide/TiO₂ heterostructures. *Adv. Energy Mater.* **2020**, *10* (1), 1902355.

(5) Kumar, S.; Pickett, M. D.; Strachan, J. P.; Gibson, G.; Nishi, Y.; Williams, R. S. Local temperature redistribution and structural transition during joule-heating-driven conductance switching in VO₂. *Adv. Mater.* **2013**, *25* (42), 6128–6132.

(6) Lee, D.; Chung, B.; Shi, Y.; Kim, G. Y.; Campbell, N.; Xue, F.; Song, K.; Choi, S. Y.; Podkaminer, J. P.; Kim, T. H. Isostructural metal-insulator transition in VO₂. *Science* **2018**, *362* (6418), 1037.

(7) O'Callahan, B. T.; Jones, A. C.; Park, J. H.; Cobden, D. H.; Atkin, J. M.; Raschke, M. B. Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO₂. *Nat. Commun.* **2015**, *6*, 6849.

(8) Li, G.; Xie, D.; Zhong, H.; Zhang, Z.; Fu, X.; Zhou, Q.; Li, Q.; Ni, H.; Wang, J.; Guo, E. Photo-induced non-volatile VO₂ phase transition for neuromorphic ultraviolet sensors. *Nat. Commun.* **2022**, *13* (1), 1729.

(9) Tang, K.; Wang, X.; Dong, K.; Li, Y.; Li, J.; Sun, B.; Zhang, X.; Dames, C.; Qiu, C.; Yao, J.; et al. A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal–Insulator Transition. *Adv. Mater.* **2020**, *32* (36), 1907071.

(10) Xue, W.; Liu, G.; Zhong, Z.; Dai, Y.; Shang, J.; Liu, Y.; Yang, H.; Yi, X.; Tan, H.; Pan, L.; et al. A 1D Vanadium Dioxide Nanochannel Constructed via Electric-Field-Induced Ion Transport and its Superior Metal–Insulator Transition. *Adv. Mater.* **2017**, *29* (39), 1702162.

(11) Zheng, J.; Bao, S.; Jin, P. TiO₂(R)/VO₂(M)/TiO₂(A) multilayer film as smart window: combination of energy-saving, antifogging and self-cleaning functions. *Nano Energy* **2015**, *11*, 136–145.

(12) Jian, J.; Wang, X.; Li, L.; Fan, M.; Zhang, W.; Huang, J.; Qi, Z.; Wang, H. Continuous tuning of phase transition temperature in VO₂ thin films on c-cut sapphire substrates via strain variation. *ACS Appl. Mater. Interfaces* **2017**, *9* (6), 5319–5327.

(13) Peter, A. P.; Martens, K.; Rampelberg, G.; Toeller, M.; Ablett, J. M.; Meerschaut, J.; Cuypers, D.; Franquet, A.; Detavernier, C.; Rueff, J.-P. Metal–insulator transition in ALD VO₂ ultrathin films and nanoparticles: morphological control. *Adv. Funct. Mater.* **2015**, *25* (5), 679–686.

(14) Fan, L.; Chen, Y.; Liu, Q.; Chen, S.; Zhu, L.; Meng, Q.; Wang, B.; Zhang, Q.; Ren, H.; Zou, C. Infrared response and optoelectronic memory device fabrication based on epitaxial VO₂ film. *ACS Appl. Mater. Interfaces* **2016**, *8* (48), 32971–32977.

(15) Ekstrom, E.; Hurand, S.; le Fevrier, A.; Elsukova, A.; Persson, P. O. A.; Paul, B.; Eriksson, F.; Sharma, G.; Voznyy, O.; Sangiovanni, D. G. Microstructure control and property switching in stress-free van der Waals epitaxial VO₂ films on mica. *Mater. Des.* **2023**, *229*, 111864.

(16) Ekström, E.; Hurand, S.; Yildizhan, M. M.; Elsukova, A.; Persson, P. O. A.; Paul, B.; Ramanath, G.; le Fevrier, A.; Eriksson, F.; Eklund, P. Single-phase growth, stabilization, and electrical properties of B phase VO₂ films grown on mica by reactive magnetron sputtering. *Adv. Physics Res.* **2023**, *2* (12), 2300032.

(17) Liu, M.; Li, X.; Li, L.; Li, L.; Zhao, S.; Lu, K.; Chen, K.; Zhu, J.; Zhou, T.; Hu, C. Continuous photothermal and radiative cooling energy harvesting by VO₂ smart coatings with switchable broadband infrared emission. *ACS Nano* **2023**, *17* (10), 9501–9509.

(18) Chen, B.; Wang, X.; Li, W.; Li, C.; Wang, Z.; Guo, H.; Wu, J.; Fan, K.; Zhang, C.; He, Y.; et al. Electrically addressable integrated intelligent terahertz metasurface. *Sci. Adv.* **2022**, *8* (41), No. eadd1296.

(19) Prakash, S.; Pitchappa, P.; Agrawal, P.; Jani, H.; Zhao, Y.; Kumar, A.; Thong, J.; Linke, J.; Ariando, A.; Singh, R.; et al. Electromechanically reconfigurable terahertz stereo metasurfaces. *Adv. Mater.* **2024**, *36* (32), 2402069.

(20) Shi, R.; Chen, Y.; Cai, X.; Lian, Q.; Zhang, Z.; Shen, N.; Amini, A.; Wang, N.; Cheng, C. Phase management in single-crystalline vanadium dioxide beams. *Nat. Commun.* **2021**, *12* (1), 4214.

(21) Shi, R.; Cai, X.; Wang, W.; Wang, J.; Kong, D.; Cai, N.; Chen, P.; He, P.; Wu, Z.; Amini, A.; et al. Single-crystalline vanadium dioxide actuators. *Adv. Funct. Mater.* **2019**, *29* (20), 1900527.

(22) Wang, T.; Torres, D.; Fernandez, F. E.; Green, A. J.; Wang, C.; Sepulveda, N. Increasing efficiency, speed, and responsivity of vanadium dioxide based photothermally driven actuators using single-wall carbon nanotube thin-films. *ACS Nano* **2015**, *9* (4), 4371–4378.

(23) Yuan, R.; Tiw, P. J.; Cai, L.; Yang, Z.; Liu, C.; Zhang, T.; Ge, C.; Huang, R.; Yang, Y. A neuromorphic physiological signal processing system based on VO₂ memristor for next-generation human-machine interface. *Nat. Commun.* **2023**, *14* (1), 3695.

(24) Lee, Y. J.; Kim, Y.; Gim, H.; Hong, K.; Jang, H. W. Nanoelectronics Using Metal–Insulator Transition. *Adv. Mater.* **2024**, *36* (5), No. e2305353.

(25) Feng, C.; Li, B.; Dong, Y.; Chen, X.; Zheng, Y.; Wang, Z.; Lin, H.; Jiang, W.; Zhang, S.; Zou, C.; et al. Quantum imaging of the reconfigurable VO₂ synaptic electronics for neuromorphic computing. *Sci. Adv.* **2023**, *9* (40), No. eadg9376.

(26) Chen, Y.; Fan, L.; Fang, Q.; Xu, W.; Chen, S.; Zan, G.; Ren, H.; Song, L.; Zou, C. Free-standing SWNTs/VO₂/Mica hierarchical films for high-performance thermochromic devices. *Nano Energy* **2017**, *31*, 144–151.

(27) Stinson, H. T.; Sternbach, A.; Najera, O.; Jing, R.; McLeod, A. S.; Slusar, T. V.; Mueller, A.; Anderegg, L.; Kim, H. T.; Rozenberg, M. Imaging the nanoscale phase separation in vanadium dioxide thin films at terahertz frequencies. *Nat. Commun.* **2018**, *9*, 3604.

(28) Chen, S.; Wang, Z.; Ren, H.; Chen, Y.; Yan, W.; Wang, C.; Li, B.; Jiang, J.; Zou, C. Gate-controlled VO₂ phase transition for high-performance smart windows. *Sci. Adv.* **2019**, *5* (3), No. eaav6815.

(29) Chang, T.; Cao, X.; Dedon, L. R.; Long, S.; Huang, A.; Shao, Z.; Li, N.; Luo, H.; Jin, P. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings. *Nano Energy* **2018**, *44*, 256–264.

(30) Lee, D. K.; Park, Y.; Sim, H.; Park, J.; Kim, Y.; Kim, G.-Y.; Eom, C.-B.; Choi, S.-Y.; Son, J. Heterogeneous integration of single-crystalline rutile nanomembranes with steep phase transition on silicon substrates. *Nat. Commun.* **2021**, *12* (1), 5019.

(31) Jo, Y.-R.; Lee, W.-J.; Yoon, M.-H.; Kim, B.-J. In situ tracking of low-temperature VO₂ crystallization via photocombustion and characterization of phase-transition reliability on large-area flexible substrates. *Chem. Mater.* **2020**, *32* (9), 4013–4023.

(32) Gu, J.; Wei, H.; Ren, F.; Guan, H.; Liang, S.; Geng, C.; Li, L.; Zhao, J.; Dou, S.; Li, Y. VO₂ based infrared radiation regulator with excellent dynamic thermal management performance. *ACS Appl. Mater. Interfaces* **2022**, *14* (2), 2683–2690.

(33) Park, D. Y.; Joe, D. J.; Kim, D. H.; Park, H.; Han, J. H.; Jeong, C. K.; Park, H.; Park, J. G.; Joung, B.; Lee, K. J. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. *Adv. Mater.* **2017**, *29* (37), 1702308.

(34) Bakaul, S. R.; Serrao, C. R.; Lee, O.; Lu, Z.; Yadav, A.; Carraro, C.; Maboudian, R.; Ramesh, R.; Salahuddin, S. High speed epitaxial perovskite memory on flexible substrates. *Adv. Mater.* **2017**, *29* (11), 1605699.

(35) Shen, L.; Wu, L.; Sheng, Q.; Ma, C.; Zhang, Y.; Lu, L.; Ma, J.; Ma, J.; Bian, J.; Yang, Y.; et al. Epitaxial lift-off of centimeter-scaled spinel ferrite oxide thin films for flexible electronics. *Adv. Mater.* **2017**, *29* (33), 1702411.

(36) Bouaziz, J.; Cancellieri, C.; Rheingans, B.; Jeurgens, L. P. H.; La Mattina, F. Advanced epitaxial lift-off and transfer procedure for the fabrication of high-quality functional oxide membranes. *Adv. Mater. Interfaces* **2023**, *10* (2), 2201458.

(37) Bitla, Y.; Chu, Y.-H. Van der waals oxide heteroepitaxy for soft transparent electronics. *Nanoscale* **2020**, *12* (36), 18523–18544.

(38) Guo, Y.; Peng, B.; Qiu, R.; Dong, G.; Yao, Y.; Zhao, Y.; Zhou, Z.; Liu, M. Self-rolling-up enabled ultrahigh-density information storage in freestanding single-crystalline ferroic oxide films. *Adv. Funct. Mater.* **2023**, *33* (20), 2213668.

(39) Chen, B.; Zhu, W.; Wang, T.; Peng, B.; Xu, Y.; Dong, G.; Guo, Y.; Liu, H.; Huang, H.; Liu, M. Ultrahigh energy storage capacitors based on freestanding single-crystalline antiferroelectric membrane/PVDF composites. *Adv. Funct. Mater.* **2023**, *33* (36), 2302683.

(40) Cheng, Y.; Li, Y.; Dong, G.; Peng, B.; Zhou, Z.; Liu, M. Flexible multiferroic heterostructure based on freestanding single-crystalline BaTiO₃ membranes for spintronic devices. *Adv. Electron. Mater.* **2022**, *8* (6), 2100923.

(41) Peng, B.; Peng, R.; Zhang, Y.; Dong, G.; Zhou, Z.; Zhou, Y.; Li, T.; Liu, Z.; Luo, Z.; Wang, S.; et al. Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO₃ membranes. *Sci. Adv.* **2020**, *6* (34), No. eaba5847.

(42) Liu, Y.; Cai, Y.; Zhang, Y.; Deng, X.; Zhong, N.; Xiang, P.; Duan, C. Van der waals epitaxy for high-quality flexible VO₂ film on mica substrate. *J. Appl. Phys.* **2021**, *130* (2), 025301.

(43) Ma, H.; Xiao, X.; Wang, Y.; Sun, Y.; Wang, B.; Gao, X.; Wang, E.; Jiang, K.; Liu, K.; Zhang, X. Wafer-scale freestanding vanadium dioxide film. *Sci. Adv.* **2021**, *7* (50), No. eabk3438.

(44) Li, X.; Yin, Z.; Zhang, X.; Wang, Y.; Wang, D.; Gao, M.; Meng, J.; Wu, J.; You, J. Epitaxial liftoff of wafer-scale VO₂ nanomembranes for flexible, ultrasensitive tactile sensors. *Adv. Mater. Technol.* **2019**, *4* (7), 1800695.

(45) Han, K.; Wu, L.; Cao, Y.; Wang, H.; Ye, C.; Huang, K.; Motapothula, M.; Xing, H.; Li, X.; Qi, D.-C. Enhanced metal-insulator transition in freestanding VO₂ down to 5 nm thickness. *ACS Appl. Mater. Interfaces* **2021**, *13* (14), 16688–16693.

(46) Xu, C.; Jin, C.; Chen, Z.; Lu, Q.; Cheng, Y.; Zhang, B.; Qi, F.; Chen, J.; Yin, X.; Wang, G.; et al. Transient dynamics of the phase transition in VO₂ revealed by mega-electron-volt ultrafast electron diffraction. *Nat. Commun.* **2023**, *14* (1), 1265.

(47) Liu, X.; Sun, G.; Chen, P.; Liu, J.; Zhang, Z.; Li, J.; Ma, H.; Zhao, B.; Wu, R.; Dang, W. High-performance asymmetric electrodes photodiode based on Sb/WSe₂ heterostructure. *Nano Res.* **2019**, *12* (2), 339–344.

(48) Yuan, W.; Ueji, K.; Yagi, T.; Endo, T.; Lim, H. E.; Miyata, Y.; Yomogida, Y.; Yanagi, K. Control of thermal conductance across vertically stacked two-dimensional van der Waals materials via interfacial engineering. *ACS Nano* **2021**, *15* (10), 15902–15909.

(49) Deus, D. P. D. A.; Lopes, J. M. J.; Miwa, R. H. Stacking order effects on the energetics and electronic properties of n-doped graphene/h-BN van der Waals heterostructures on SiC(0001). *Carbon* **2023**, *213*, 118244.

(50) Jin, G.; Lee, C.-S.; Okello, O. F. N.; Lee, S.-H.; Park, M. Y.; Cha, S.; Seo, S.-Y.; Moon, G.; Min, S. Y.; Yang, D.-H. Heteroepitaxial van der Waals semiconductor superlattices. *Nat. Nanotechnol.* **2021**, *16* (10), 1092.

(51) Li, Y.; Ma, H.; Tang, F.; Li, C.; Wang, B.; Song, X.; Liu, K.; Zhang, X. Direct laser writing of multishaped VO₂ microactuators based on freestanding VO₂ film. *Adv. Mater. Technol.* **2023**, *8* (1), 2200977.

(52) Chae, J.-Y.; Lee, D.; Lee, D. W.; Woo, H.-Y.; Kim, J. B.; Paik, T. Direct transfer of thermochromic tungsten-doped vanadium dioxide thin-films onto flexible polymeric substrates. *Appl. Surf. Sci.* **2021**, *545*, 148937.

(53) Shen, N.; Chen, S.; Shi, R.; Niu, S.; Amini, A.; Cheng, C. Phase transition hysteresis of tungsten doped VO₂ synergistically boosts the function of smart windows in ambient conditions. *ACS Appl. Electron. Mater.* **2021**, *3* (8), 3648–3656.

(54) Zhao, Z.; Li, J.; Ling, C.; Zhao, X.; Zhao, Y.; Jin, H. Electric field driven abnormal increase in conductivity of tungsten-doped VO₂ nanofilms. *Thin Solid Films* **2021**, *725*, 138643.

(55) Tang, C.; Georgopoulos, P.; Fine, M. E.; Cohen, J. B.; Nygren, M.; Knapp, G. S.; Aldred, A. Local atomic and electronic arrangements in W_xV_{1-x}O₂. *Phys. Rev. B* **1985**, *31* (2), 1000–1011.

(56) Liu, D.; Zhang, Q.; Chen, X.; Dai, H.; Zhai, X.; Gong, G.; Shang, C.; Xie, L.; Wang, X. Defect engineering of vanadium dioxide by W ion doping with enhanced electrochemical performance. *Ceram. Int.* **2023**, *49* (14), 23704–23713.

(57) Chen, B.; Wu, J.; Li, W.; Zhang, C.; Fan, K.; Xue, Q.; Chi, Y.; Wen, Q.; Jin, B.; Chen, J.; et al. Programmable terahertz metamaterials with non-volatile memory. *Laser Photonics Rev.* **2022**, *16* (4), 2100472.

(58) Xiao, L.; Ma, H.; Liu, J.; Zhao, W.; Jia, Y.; Zhao, Q.; Liu, K.; Wu, Y.; Wei, Y.; Fan, S. Fast adaptive thermal camouflage based on flexible VO₂/graphene/CNT thin films. *Nano Lett.* **2015**, *15* (12), 8365–8370.

(59) Li, Y.; Ma, H.; Wang, Y.; Ding, J.; Qi, L.; Fu, Y.; Ning, R.; Rong, L.; Wang, D.; Zhang, X. Electrically driven active VO₂/MXene metasurface for the terahertz modulation. *Appl. Phys. Lett.* **2022**, *121* (24), 241902.

(60) Lee, S.; Cheng, C.; Guo, H.; Hippalgaonkar, K.; Wang, K.; Suh, J.; Liu, K.; Wu, J. Axially engineered metal-insulator phase transition by graded doping VO₂ nanowires. *J. Am. Chem. Soc.* **2013**, *135* (12), 4850–4855.

(61) Zhu, H.; Li, Q.; Tao, C.; Hong, Y.; Xu, Z.; Shen, W.; Kaur, S.; Ghosh, P.; Qiu, M. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. *Nat. Commun.* **2021**, *12* (1), 1805.

(62) Wei, H.; Gu, J.; Ren, F.; Geng, C.; Guan, H.; Liang, S.; Fan, Q.; Zhao, J.; Wang, C.; Dou, S.; et al. Kirigami-inspired reconfigurable thermal mimetic device. *Laser Photon. Rev.* **2022**, *16* (12), 2200383.

(63) Mogunov, I. A.; Lysenko, S.; Fedianin, A. E.; Fernandez, F. E.; Rua, A.; Kent, A. J.; Akimov, A. V.; Kalashnikova, A. M. Large non-thermal contribution to picosecond strain pulse generation using the photo-induced phase transition in VO₂. *Nat. Commun.* **2020**, *11* (1), 1690.

(64) Fan, X.; Hehn, M.; Wei, G.; Malinowski, G.; Huang, T.; Xu, Y.; Zhang, B.; Zhang, W.; Lin, X.; Zhao, W. On/off ultra-short spin current for single pulse magnetization reversal in a magnetic memory using VO₂ phase transition. *Adv. Electron. Mater.* **2022**, *8* (10), 2200114.

(65) Wang, T.; Torres, D.; Fernandez, F. E.; Wang, C.; Sepulveda, N. Maximizing the performance of photothermal actuators by combining smart materials with supplementary advantages. *Sci. Adv.* **2017**, *3* (4), 1602697.