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ABSTRACT: The cost of annual energy consumption in buildings in the United States
exceeds 430 billion dollars (Science 2019, 364 (6442), 760—763), of which about 48% is used for
space thermal management (https:/ /www.iea.org/reports/global-status-report-for-buildings-and-
construction-2019), revealing the urgent need for efficient thermal management of buildings and
dwellings. Radiative cooling technologies, combined with the booming photonic and micro-
fabrication technologies (Nature 2014, S1S (7528), 540—544), enable energy-free cooling by
radiative heat transfer to outer space through the atmospheric transparent window (Nat. Commun.
2024, 15 (1), 81S5). To pursue all-season energy savings in climates with large temperature
variations, switchable and tunable radiative coolers (STRC) have emerged in recent years and
quickly gained broad attention. This Perspective introduces the existing STRC technologies and
analyzes their benefits and challenges in future large-scale applications, suggesting ways for the
development of future STRCs.
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INTRODUCTION

Temperature regulation of buildings and dwellings has played a
crucial role throughout the human history.” Technological
advances in recent centuries have brought in more efficient and
convenient thermal regulation approaches, such as electrical
heaters,’ gas heating,7 and air conditioners.® However, these
energy-consuming devices are responsible for the over-
consumption of fossil fuels as well as the resultant greenhouse
gas emissions.” According to the data by the U.S. Energy
Information Administration, more than 51% of annual
household site energy consumption goes to space heating
and cooling.'’ Therefore, the development and deployment of
eco-friendly thermal regulation technologies have become an
urgent demand for our society.""
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Figure 1. Schematic diagram of the daytime thermal equilibrium

Among these technologies, radiative cooling is already
mature enough with commercially available products and a
booming global market.””'* The basis of radiative cooling

technology lies in the fact that the cold outer space (~3 K)
acts as a vast heat sink for the radiative cooling of terrestrial
objects.'” Radiative coolers feature materials with nearly ideal
thermal emissivity for maximal outgoing thermal radiation to
the cold outer space through the mid-infrared (MIR)
atmospheric transparency window (8—13 um)."* Meanwhile,
solar reflectance by the radiative coolers is maximized for
minimal solar heating.”"

The photonic principles and heat exchange processes in
radiative coolers are illustrated in Figure 1. Taking the daytime
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as an example, the thermal equilibrium equation for the
radiative cooler is as follows,

PC = PRad - PAtm - PSolar - PNon (1)
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Figure 2. Timeline showing the development of radiative cooling technologies of four generations: macroscopic design, nanotechnology,
scalable manufacturing and textiles, and switchable and tunable radiative coolers. Reprinted with permission from ref 1. Copyright [2019]
[American Association for the Advancement of Science]. Reprinted with permission from ref 3. Copyright [2014] [Springer Nature].
Reprinted with permission from ref 11. Copyright [2018] [American Association for the Advancement of Science]. Reprinted with
permission from ref 14. Copyright [1975] [Elsevier]. Reprinted with permission from ref 17. Copyright [2023] [Elsevier]. Reprinted with
permission from ref 18. Copyright [2021] [American Association for the Advancement of Science]. Reprinted with permission from ref 19.
Copyright [1978] [Elsevier]. Reprinted with permission from ref 20. Copyright [1993] [Elsevier]. Reprinted with permission from ref 21.
Copyright [1992] [Elsevier]. Reprinted with permission from ref 22. Copyright [1984] [Optica Publishing Group]. Reprinted with
permission from ref 24. Copyright [1996] [Elsevier]. Reprinted with permission from ref 29. Copyright [2017] [Wiley-VCH]. Reprinted
with permission from ref 33. Copyright [2017] [American Association for the Advancement of Science]. Reprinted with permission from ref
36. Copyright [2022] [Elsevier]. Reprinted with permission from ref 37. Copyright [2023] [Elsevier]. Reprinted with permission from ref
38. Copyright [2016] [Springer Nature]. Reprinted with permission from ref 39. Copyright [1995] [Elsevier]. Reprinted with permission
from ref 40. Copyright [201S] [Wiley-VCH]. Reprinted with permission from ref 41. Copyright [2016] [American Association for the
Advancement of Science]. Reprinted with permission from ref 42. Copyright [2024] [American Chemical Society]. Reprinted with
permission from ref 43. Copyright [2020] [Springer Nature]. Reprinted with permission from ref 44. Copyright [2020] [Springer Nature].
Reprinted with permission from ref 45. Copyright [2023] [American Association for the Advancement of Science]. Reprinted with
permission from ref 46. Copyright [2018] [Optica Publishing Group]. Reprinted with permission from ref 47. Copyright [2019] [Wiley-
VCH]. Reprinted with permission from ref 48. Copyright [2020] [American Chemical Society]. Reprinted with permission from ref 49.
Copyright [2022] [Wiley-VCH]. Reprinted with permission from ref 50. Copyright [2021] [American Association for the Advancement of
Science]. Reprinted with permission from ref 51. Copyright [2022] [Springer Nature]. Reprinted with permission from ref 52. Copyright
[2023] [American Association for the Advancement of Science].

where P represents the net radiative cooling power of the
cooler, Pp,q represents the thermal emission power of the
cooler, P, represents the absorbed atmospheric radiation,
Pg,1.r represents the power of the solar radiation absorbed by
the cooler, and Py, represents all nonradiative heat exchanges.

The thermal emission power of the cooler (Pg,) can be

refers to the emissivity that is based on the wavelength and
angle.

Through the analysis of power flow in a cooler under
thermal equilibrium, it is imperative to enhance Py,q to realize
a high radiative cooling power. This requires the cooler to have
a high emissivity in the 8—13 pm wavelength range because

calculated by

Rad(T) = Aemitter /dQ cos 6 /OOIBB(T) /1)8(/1) 6) dll
0
()

where A, represents the surface area of the cooler, Iz
(T,A) denotes the thermal radiation intensity of an ideal
blackbody at a given temperature and wavelength, and &(4,0)

18119

this atmospheric transparency window overlaps with the peak
wavelength of blackbody radiation curve at 300 K. Con-
currently, it is essential to diminish Pg,,, and P,y,,. The former
demands that the cooler possesses high reflectance in the solar
wavelength range, while the latter necessitates a reduction in
the cooler’s emissivity beyond the atmospheric transparency
window to mitigate the impact of atmospheric radiation.
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(a)

Figure 3. Schematic diagram of the four main regulation methods used in STRC. (a) Temperature-adaptive. (b) Humidity-adaptive. (c)
Voltage-controlled. (d) Motor-controlled. Reprinted with permission from ref 18. Copyright [2021] [American Association for the
Advancement of Science]. Reprinted with permission from ref 44. Copyright [2020] [Springer Nature]. Reprinted with permission from ref
55. Copyright [2019] [American Association for the Advancement of Science]. Reprinted with permission from ref 66. Copyright [2023]

[Springer Nature].

However, these static radiative coolers can only cool objects
and continue to radiative cool at cold nights or winter times,
hence falllng to satisfy the heat-retaining requirements in those
conditions.'® In recent years, efforts to meet the requirements
of all-season passive thermal regulation have led to the
invention of STRC technologles It is worth noting that Li et

al.'” and Tang et al.' ® have conducted numerical simulations of

STRCs in 15 climate zones of the United States, respectively,
finding that for most climate zones, STRCs offer higher energy
savings compared to static radiative cooling materials,
especially in regions with significant temperature variations.
However, for areas with consistently high temperatures, the
energy savings of STRCs are almost comparable to those of
static radiative cooling materials.

In this Perspective, we briefly summarize the mechanisms of
up-to-date STRC technologies. We analyze their common
technical challenges, which hinder wide commercialization and
real-world deployment, and we discuss future research
directions in this field. This Perspective analyzes the
mechanism, benefits, challenges, and future directions of
STRC that could potentially help advance the sustainability
of our society and ease challenges from climate change.

HISTORY

The development of radiative cooling technologies can be
divided into four stages, as shown in Figure 2.

Tremendous efforts have been made from 1970s to 1990s
with experimental realization of various radiative cooling
materials, including (pigmented) paints,"”*® (pigmented)
polymers,”" radiative gases,2 etc. Although subambient
cooling could be achieved,” the solar reflectivity and thermal
emissivity of those radiative coolers are far below unity”* and
thus their radiative cooling performance is far from satisfactory.

An revolutionary improvement of radiative cooling tech-
nologles started from 2014 Wthh can be considered as the
“renaissance” of radiative coolers.” In only 1—2 years, both the
solar reflectivity and thermal emissivity of nanostructured
radiative coolers quickly approached unity.”> Various designs

of radiative coolers with nearly perfect cooling performance
were theoretically proposed and/or experimentally imple-
mented, such as multilayer nanostructures,””** metamaterials
and metasurfaces.””>* The rapid and successful development
of radiative cooling technology during that time “was standing
on the shoulders of giants”: advances in nanophotonics, micro/
nanofabrication, and materials sciences. Nevertheless, these
high-performance implementations were unable to be applied
in real scenarios because they mostly rely on lithography or
thin-film deposition techniques with requirements of carefully
controlled micro/nanosized features.”

As the full cooling potential of terrestrial radiative coolers
approaches saturation, research was then focused on scalable
manufacturing of radiative coolers that are lithography-free
with lower fabrication costs.” For example, Zhai et al. reported
a mass-manufactured glass—polymer ﬁlm with 93 W/m?
cooling power under direct sunshine.”> Later on, scalable
radiative cooling textiles for clothes and tents were invented for
the cooling of human bodies in the summer™* ™ with some
success in commercialization.”’ It is worth noting that
promoting the trend toward mass-production of radiative
coolers would require low-cost nanostructuration approaches.

Though conventional radiative cooling technologies keep
buildings and human bodies cool on hot days, the static
radiative coohng power cannot be turned off leading to
undesirable “overcooling” at low temperatures,” thus exacer-
bating the heating power consumption as heating load
penalties in those conditions.””*® To tackle this challenge,
STRCs were intensively 1nvest1§ated since 2018.*" Initial
attempts were mostly theoretical ™*”° or power-consuming
(actlve), > and several energy-free (passive) STRCs were
experimentally implemented in the lab without field tests.>**
In 2021, Tang et al. and Wang et al. demonstrated energy-free,
flexible, temperature-adaptive radiative coatings with field tests
and presented year-round energy-saving simulations,"*** which
quantitatively showed that, in areas with large daily or seasonal
temperature variations, smart thermal regulation based on
STRC:s is preferred due to higher year-round energy savings.
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MECHANISMS

Depending on the specific physical mechanisms and principles,
STRCs can be classified into several categories (Figure 3):
temperature-adaptive, humidity-adaptive, voltage-controlled,
and motor-controlled. These coolers are applicable in diverse
domains, encompassing roofs, windows, walls, and advanced
textiles as well in the fields of electric vehicles and aerospace.

Temperature-Adaptive STRCs. Temperature-adaptive
STRCs with temperature-responsive materials can dynamically
adjust their infrared (IR) emissivity according to temperature
changes, including dual-mode bimorph structures,”"®’ phase-
change materials (PCM),”> and shape memory alloys
(SMAs).*>! Figure 3(a) illustrates the regulation method
for temperature-adaptive STRCs. When used as a roofing
material, at low temperatures, the emissivity of the temper-
ature-adaptive STRC in the MIR band (especially the
atmospheric transparent window) is rather low to effectively
keep the building warm. When the temperature rises, it
automatically switches to a high emissivity mode due to the
dramatic refractive index change, thereby achieving strong
radiative cooling and maintaining a cool indoor environment.

Dual-mode bimorph structures rely on stress changes in an
additional temperature-responsive layer to achieve automatic
switching between radiative cooling in high-temperature
environments and solar heating in low-temperature environ-
ments.”"®” Though the complicated design may not be
conducive to large-scale production, the bimorph structure
enriches the functionality of temperature-adaptive STRCs with
excellent thermoregulation performance. On the other hand,
PCMs (including V0,,%® GST,”~"" and perovskites72'73) are
more widely used in temperature-adaptive STRCs for their
temperature-sensitive optical properties in the IR range. For
example, VO, undergoes temperature-driven and reversible
metal—insulator phase change upon heating across its
transition temperature with a drastic contrast in IR refractive
index.”* Typically, photonic structures such as Fabry-Pérot
cavities,'™*” metasurfaces,”* and optical antennas'” are used to
amplify the phase-transition properties of VO,, resulting in
various structures of VO,-based STRCs. In addition, to enable
VO,-based STRC to undergo phase transitions at room
temperatures, a variety of methods to reduce the phase-
transition temperature of VO, could be adopted, such as metal
doping,” ultraviolet irradiation,”® and noncatalytic hydro-
genation.77

Besides that, STRCs based on SMA actuators are also
temperature-adaptive.”® Xia et al. used a temperature shape
memory spring (TSMS) to drive the opening angle of metal
plates for adaptive radiation.*®

Humidity-Adaptive STRCs. Humidity-adaptive, or water-
absorptive is another way to achieve passive STRCs. Such
radiative coolers could find applications as smart fabrics for
personal thermal management as the human body secretes
sweat upon temperature rises.””" Figure 3(b) demonstrates
the regulation method of humidity-adaptive STRCs for
personal thermal management. At cold temperatures, perspi-
ration is minimal and the STRC is in an off state. The distance
between humidity-sensitive STRC fibers is large, leading to
weak electromagnetic coupling with a low emissivity.
Conversely, when the temperature rises, perspiration increases,
and the distance between the humidity-sensitive fibers
decreases, causing an enhancement in electromagnetic
coupling with a high emissivity for excellent radiative cooling

performance. For example, Zhang et al.>> designed a smart
fabric by coating a thin layer of cellulose triacetate bilayer
fibers with carbon nanotubes, achieving over 35% IR emissivity
modulation depth based on a modest humidity change. The
dynamic infrared pass effect is primarily caused by the
distance-sensitive electromagnetic coupling between adjacent
coated fibers in the textile yarn, providing an alternative
perspective for personal thermal management.

Voltage-Controlled STRCs. While passive STRCs offer
energy-efficient regulation, active-control STRCs are necessary
in specific application scenarios where higher control precision
and faster responses are required. Though high-speed
modulation of thermal emission has been proven challenging
because the intensity of thermal emission from an object is
typically determined by its temperature,”” successful voltage-
controlled STRCs were experimentally demonstrated. Figure
3(c) demonstrates a common modulation method and
principle for voltage-controlled STRCs. During hot seasons,
the top infrared-transparent electrode and the bottom high
emissivity aqueous electrolyte can effectively dissipate heat
through radiative cooling. On the other hand, during cold
seasons, applying a reverse voltage can lead to the deposition
of a metal layer on the upper surface, thereby achieving a low
emissivity. For instance, electrochromic devices possess the
capability of dynamically managing the optical and thermal
performance of buildings with an external volta§e. Hence, they
find vast applications as smart windows,"***** smart roofs,**
electro-optical camouflage,”” or spacecraft thermal manage-
ment.*"*> Most electrochromic devices were achieved through
reversible metal electrodeposition with various structures and
composition materials, 07780828386

Motor-Controlled STRCs. In addition to the aforemen-
tioned approaches, mechanical braking methods are also used
for the dynamic regulation of radiative coolers, with categories
including flip-type,””*”** pulling-type,** and stretch-type.****
Flip-type is based on the manual flipping of Janus membranes
whose two surfaces are of different IR emissivity: one for
radiative cooling and the other one for solar heating.*”*”**
Besides ﬂig)ping, pulling is also effective in switching radiative
coolers.*™™ Figure 3(d) illustrates a pulling-type motor-
controlled STRC. During cold seasons, the motor pulls out
the low-emissivity coating to keep the mixture warm.
Conversely, during hot seasons, the motor pulls out high-
emissivity coating to facilitate radiative cooling.

Li et al. controlled a polymer composite sheet with a
rotation brake and a wheel control system, so that the desired
portion of material can be selectively exposed to the sky for
heating or cooling.""** As an example, Andrew et al. achieved
emissivity switching by embedding patterned rectangular and
cylindrical dielectric (Si3N,) structures into periodic wavy
elastic material (PDMS) through stretching.36

CHALLENGES AND PERSPECTIVES

Modulation Depth of Thermal Emissivity. Modulation
depth of thermal emissivity (Aerg) upon mode-switching is
another important indicator for optimizing STRCs, which
determines their year-round total energy savings or thermal
comfort. As an example of PCMs, VO, is integrated into
micro/nanostructures to enhance Aeryg, leading to VO,-based
multilayer films,'% core—shell,'®'%” and metasurfaces.'¥¢*1%%
Nevertheless, there is still room for further improvement of
Aegrg, as shown in Figure 4.

https://doi.org/10.1021/acsnano.4c05929
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experimentally demonstrated STRCs while open ones indicate
theoretical designs without experimental verifications.

Representative multilayer VO,-based STRCs include VO,/
Al realized Aery = 022 by Kruzelecky et al.'® To better
exploit the IR modulation properties of VO,, Fabry—Perot
(F—P) cavities were proposed to enhance the light—matter
interaction. For example, VO,/Si0,/Au''® and VO,/HfO,/
Au'*” sandwich structures were proposed with Aery = 0.49
and 0.55, respectively. Although large modulation depths can
also be achieved with gradient refractive structures and core—
shell structures, fabrication complexity presents a barrier to
their large-scale manufacturing. In recent years, metasurfaces
have been used to further enhance the Aep of VO,-based
STRCs, which are favorable due to the effectively reduced solar
absorptance by decreasing the VO, surface coverage.'”® For
example, Tang et al. designed a WVO,-based STRC metasur-
face with F—P cavities, achieving a record-breaking Aerg = 0.7
with field tests.'®

Solar Heating and Aesthetic Requirements. Most
conventional static radiative coolers are solely designed for
cooling, so they are mostly white for broadband reflectance in
the visible spectrum to minimize solar absorptance. However,
STRCs account for both heat retaining and gassive cooling, so
their solar absorption should be oIptimized,lz‘ instead of simply
minimized, for various climates.”® On the other hand, white
coatings are not always favored due to the aesthetic
requirements of customers. Therefore, colored STRCs is
becoming increasingly popular with more attention.'**

To achieve colored STRCs, two main strategies could be
adopted:'*® (1) The dye-based method directly applies IR-
transgparent dyes onto radiative coolers. For instance, Son et
al."*® manufactured a coating with silicon dioxide-embedded
perovskite nanocrystals and applying it to emitters, leading to
white, green, and red static radiative cooling materials. Peng et
al.'"”” encapsulated IR-transparent nanoparticles such as
Prussian iron blue, iron oxide (Fe,0;), and silicon (Si)
between polymer and Al leading to radiative cooling films with
blue, red, and yellow colors. Similarly, Li et al.'’ applied IR-
transparent pigments in the design of STRCs, successfully
optimizing solar albedo with aesthetic considerations. (2) The
structure-based method adjusts the absorption spectrum of
radiative coolers by carefully designed photonic structures.'*®
Chen et al."”” proposed a sprayable dual-layer coating that
includes a thin visible light-absorbing layer on top of a
nonabsorbing solar scattering base layer. The top layer absorbs

polymer and random metamaterials, significantly reducing the
production difficulty and costs by a roll-to-roll scalable
manufacturing process. While large-scale processing methods
such as roll-to-roll manufacturing are adopted, it is necessary to
retain the nanophotonic structures to generate strong
phonon—polariton resonances. Additionally, electrospinning
technologies to produce nanofiber membranes is also effective
in reducing the production costs.*’

Durability and Lifetime. Durability and lifetime are
important for STRCs as they determine long-term application
costs. They strongly depend on the composition materials as
well as the application environments.

In addition to mechanical scratches, STRCs placed on
outdoor roofs may experience reduced thermoregulation
performance due to dust and precipitates accumulated on
the surfaces. Therefore, self-cleaning properties may effectively
improve their durability and lifetime.”” Zhai et al.”’ and Chen
et al.”' used a particle coating method to enhance the surface
hydrophobicity for excellent self-cleaning performance. The
stability of the material and structure is another important
factor that affects the lifetime of STRCs. For instance, ultrathin
Pt films in reversible electrostatic silver deposition may form
nanocracks that affect the thickness of the subsequent silver
deposition.”> Besides, polymer films are susceptible to
degradation and cross-linking under the influence of common
environmental factors such as light, heat, water vapor, oxygen,
and their synergistic effects.”””> The use of polymer additives
or stabilizers can be advantageous in extendin§ the lifetime of
polymers under specific application scenarios.”*

Sustainability. The materials used in the fabrication of
STRCs might have negative environmental implications,
hindering their sustainable development.

Si0,,” Ti0,,”® and AL O,"” are commonly used to reflect
sunlight in radiative cooling due to their low costs. However,
inhaling SiO, nanofibers may lead to silicosis,”> and nanoscale
TiO, and Al,O; may accumulate in mammalian reproductive
organs.”® Polymeric materials, with their low cost and high
emissivity, are extensively used in radiative coolers,”” yet they
are typically easily degraded in the environment. Additionally,
microplastics can easily contaminate the environment and
accumulate in animal and human bodies, affecting metabolism,
growth and development.”® Therefore, biodegradable poly-
meric materials such as PLA (poly(lactic acid)) and PBS
(polybutylene succinate) may be applicable in the field of
STRCs in the future, achieving sustainability at the raw
material level.” For example, Li et al.'” developed a stratified
radiative cooling film based on cellulose acetate (CA), with
commendable biodegradability. Zhu et al.'"’" applied micro-
fabrication to process natural silk for radiative cooling fabrics.
Chen et al.'” achieved transparent radiative cooling using silk
protein. It is thus expected that the use of natural materials will
contribute to the sustainable development of STRC. In
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Figure S. The mechanisms and applications of STRCs. The mechanisms include temperature adaptivity, humidity adaptivity, voltage control,
and motor control. The applications range from roofs, walls, and windows to textiles, vehicles, and aerospace. (a) Motor-controlled pulling-
type coatings for roof applications. (b) Temperature-adaptive VO, metasurfaces for aerospace applications. (c) Temperature-adaptive VO,
metasurfaces for wall applications. (d) Flip-type Janus coatings for vehicle applications. (e) Temperature-adaptive VO, multilayer structures
for window applications. (f) Humidity-adaptive metafibers for textile applications. Reprinted with permission from ref 17. Copyright [2023]
[Elsevier]. Reprinted with permission from ref 44. Copyright [2020] [Springer Nature]. Reprinted with permission from ref 55. Copyright
[2019] [American Association for the Advancement of Science]. Reprinted with permission from ref 64. Copyright [2018] [American
Chemical Society]. Reprinted with permission from ref 65. Copyright [2021] [American Association for the Advancement of Science].

Reprinted with permission from ref 150. Copyright [2023] [Elsevier].

addition, it is not sufficient to focus solely on the energy
savings and greenhouse gas emission reductions that STRCs
bring to the environment.'” The environmental impacts
throughout the entire life cycle, or life cycle assessment (LCA),
should also be considered, including the stages of raw material
acquisition, production, use, and eventual disposal. Tang et al.
conducted a systematic LCA assessment of MgO radiative
cooling paint,'** which provides insights for STRCs and guides
researchers to assess the energy savings and sustainability of
their designs by referring to the LCA.

OUTLOOKS

Application beyond Roofs. Though roofs directly facing
the sky are among the most suitable applications for
STRCs,"*™"** their future applications may also expand to
walls,"*® windows,*® clothes,"*® tents,'® (electrical) ve-
hicles,**"*”"** and spacecrafts,"*” as shown in Figure 5.

Walls require directional emission toward the sky. Zhou et
al.'*> proposed a microwedge structure with directional
emissivity contrast through magnetic coupling, which has a
huge potential to be applied on walls. Besides, graded epsilon
near zero (ENZ) material'*™'** and Brewster metasurfa-
ces"™'** could also be used to realize highly directional
thermal emission. It is noteworthy that STRCs intended for
wall applications must also address the issue of glaring as
extensive wall reflection may lead to ocular damage.
Consequently, employing STRCs with the capability of color
customization is imperative to significantly diminish specular
optical reflection, thereby averting glaring and mitigating light
pollution.

Metafabrics are of vital importance for human thermoreg-
ulation. While conventional applications of PCMs in textile
materials'**'*'** make use of their high enthalpy of fusion to
effectively absorb and release heat through phase transition,
STRCs with PCMs allow for personal thermal management via
smart radiative cooling. Therefore, broad application prospects

could be expected, such as smart blazers, jackets, and bombers.
Moreover, such temperature-adaptive fabric radiators can be
used to make tents to meet outdoor needs.

One fatal challenge faced by the thriving electric vehicle
(EV) market is the all-season battery thermal management.147
When the ambient temperature is lowered from 25 °C to —15
°C, the state of charge decreased by ~23%.'** To avoid
possible overcooling issue introduced by conventional static
radiative cooling technologies,'* smart thermoregulation by
STRCs have been proposed. Qiao et al.'** proposed a Janus
STRC film by using silica fiber, hexagonal boron nitride and
aluminum alloy foil, which can be mass-produced, enabling
year-round thermal regulation for EVs. Similarly, Heo et al.>*
introduced a Janus STRC film comprised of an Ag-
polydimethylsiloxane layer on a micropatterned quartz
substrate for smart thermoregulation.

In addition to terrestrial applications, STRCs may also find
applications in spacecraft thermal control. With the rapid
growth in spacecraft mission, using TARC as a replacement for
traditional static thermal control coatings to respond to rapid
chan§es in external thermal conditions has become essen-
tial."””'*" Among them, Xie et al.'>> proposed a STRC based
on VO, particles for spacecraft thermal control and Kim et
al.'>® used multilayer VO, films to achieve smart thermal
control. STRCs proposed by Tang et al.'® and Li et al."** have
significant potential for future aerospace thermal management
due to its high modulation depth and mechanical flexibility.

Paint-Form STRCs. The current STRCs predominantly
manifest in _})hysical forms such as rigid wafers,” flexible
membranes,”’ and bulk materials.' To better apply STRCs on
buildings, products in the form of liquid paint are more
desired, because they can then be applied to any solid surface
without conformability issues.

So far, static radiative cooling paints have been demon-
strated with outstanding single-layer coatings composed of
SiO, nanoparticles'>* and paint-like porous polymer materials

https://doi.org/10.1021/acsnano.4c05929
ACS Nano 2024, 18, 18118-18128


https://pubs.acs.org/doi/10.1021/acsnano.4c05929?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c05929?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c05929?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c05929?fig=fig5&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.4c05929?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Nano

www.acsnano.org

with all-day cooling capabilities.'" Although these coatings can
achieve radiative cooling throughout the day, they are still
static and lack self-regulation capabilities. Therefore, there is a
pressing need for paint-form STRCs that can achieve
temperature-adaptive switching and regulation throughout
the seasons. This represents a crucial approach and future
research direction for the large-scale application of STRCs on
building surfaces.

Tunable Solar Absorption. Apart from utilizing atmos-
pheric transparent windows for radiative cooling, daytime solar
radiation power also serves as a clean heat source to
harness”'>> for thermal management. STRCs with tunable
solar absorption have been proposed as a type of device that
utilizes both solar absorption (smart heating) and thermal
radiation (smart cooling) for high-performance heat manage-
ment 156-15

Conventional smart materials with tunable solar absorption
work in a similar way as STRCs by adjusting the absorption
rate of solar irradiance in response to external stimuli.'*® This
property limits their application to daytime thermoregulation,
which is further constrained by low solar irradiance during
certain weather conditions (especially cloudy days), seasons,
and wall/window orientations. Therefore, the development of
STRCs with tunable solar absorption has become a crucial
avenue for future research. For example, Xiang et al.*’
proposed a Janus STRC film with one solar-absorbing surface
and one thermal-emitting surface, which could be switched
manually by flipping. The bimorph structure proposed by
Zhang et al.’" utilizes a temperature-sensitive actuating layer to
switch between a solar heating mode and a radiative cooling
mode, achieving an average heating power of 859.8 W/m”.

Although these methods can achieve switching between
solar absorbers and thermal emitters, mass-producible, passive
STRCs with tunable solar absorption without mechanical
moving parts are still in need owing to severe limitations on
the stability of mechanical structures, the lifespan of temper-
ature memory metals, and other factors.

CONCLUSIONS

With the rapid development in global economy and urban-
ization, energy consumption by buildings has surged.160 By the
emission of excess heat into outer space, radiative cooling
technologies enable efficient thermal management of buildings
for reduced greenhouse gas emissions. To tackle the
overcooling problem of static radiative cooling at low
environment temperatures, STRCs have been proposed and
demonstrated as a potential and practical solution. Based on
the external stimuli, STRCs are categorized into passive ones
driven by environmental temperature or humidity changes as
well as active ones controlled by voltages or motors. Toward
commercialization and practical applications, STRCs face
challenges ranging from modulation depth of thermal
emissivity, solar heating optimization, and aesthetic needs to
costs, lifespan, and sustainability. These factors impose high
demands on the photonic design, material processing, and
scalable manufacturing of STRCs. In summary, the unique
advantages of STRCs promise tremendous opportunities in
various thermal control applications, including buildings,
electric vehicles, clothes, tents, and spacecrafts. Among them,
STRCs hold substantial potential as future coating technolo-
gies for building roofs, glass windows, car glass roofs, and
satellites.
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