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The new physics of magic-angle twisted bilayer graphene (TBG) motivated extensive studies of flat
bands hosted by moiré superlattices in van der Waals structures, inspiring the investigations into their
photonic counterparts with potential applications including Bose-Einstein condensation. However,
correlation between photonic flat bands and bilayer photonic moiré systems remains unexplored, impeding
further development of moiré photonics. In this work, we formulate a coupled-mode theory for low-angle
twisted bilayer honeycomb photonic crystals as a close analogy of TBG, discovering magic-angle photonic
flat bands with a non-Anderson-type localization. Moreover, the interlayer separation constitutes a
convenient degree of freedom in tuning photonic moiré bands without high pressure. A phase diagram is
constructed to correlate the twist angle and separation dependencies to the photonic magic angles. Our
findings reveal a salient correspondence between fermionic and bosonic moiré systems and pave the avenue
toward novel applications through advanced photonic band or state engineering.
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Moiré superlattices formed in twisted bilayer van der
Waals structures have been widely investigated with exotic
phenomena discovered [1–7], including fractional Chern
insulators [8], moiré excitons [9], topological physics [10],
and band engineering at high pressures [11]. Considering
various moiré systems demonstrated so far, the TBG
system is the most representative with the feature of a
mini-Brillouin zone arising from moiré superlattices
[1–3,12–14]. The report of interlayer hybridization induced
magic-angle effects in TBG is among the milestones of
moiré physics, especially the flat momentum-space
dispersion characteristics with nearly zero Fermi velocities
and singularities in its density of states [1–3,15]. Along
with the surge of research into magic-angle moiré bilayers
in condensed matter physics, photonic moiré superlattices
are also quickly gaining interests, with demonstrations of
Anderson localization and optical solitons in quasicrystals
using monolayer moiré patterns in three-dimensional pho-
torefractive materials at large twist angles [16–18]. Even
though the unique correspondence between condensed
matter systems and photonic systems has promised moiré
photonics with potential breakthroughs [12,16,18,19], a
quantitative analysis of the photonic analogy of magic-
angle moiré systems is still lacking: the existence of small
magic angles in moiré photonic systems has not been
observed and more importantly, a complete model to
characterize low-angle twisted photonic bilayers would
guide the exploration and application of twisted photonic
systems.

In this work, we report a theoretical model of low-angle
twisted bilayer photonic crystals (TBPC) to solve the
photonic moiré bands. By stacking two layers of two-
dimensional photonic crystals with a small twist angle and
a subwavelength interlayer separation, photonic magic
angles are discovered with signatures of photonic flat
bands, zero light group velocities, and spiky photonic
density of states. A modified tight binding model is
developed to take into account high coupling orders in
the reciprocal space and optical losses, followed by the
formulation of a continuum description for optical modes.
Using this model, a phase diagram of photonic magic-angle
effects as a function of the twist angle and the interlayer
separation is established and found to be consistent with
full-wave simulations. The remarkable design flexibility of
electromagnetic response from the photonic systems makes
TBPC an exceptional platform toward better understand-
ings of moiré physics in general, including new configu-
rations that are not easily achievable in electronic systems.
Figure 1(a) shows schematically the configuration of

TBPC considered in this work. We start with a model
system based on two identical honeycomb arrays of silicon
nanodisks working at telecommunication wavelengths,
which are photonic counterparts of graphene. Our theo-
retical model for TBPC [Fig. 1(b)] begins with a well-
defined transverse electric (TE) mode hosted in a single
disk unit, and we use the coupled mode theory to quantify
the coupling between nearest neighbor (NN) disks. Next, in
the same spirit of TBG theory [1], the local and periodic
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interlayer coupling in TBPC allows the use of a continuum
model for photonic moiré band calculations. As shown
later, specific combinations of the twist angle and the
interlayer separation [20] could lead to photonic magic-
angle effects in TBPC.
We consider two coupled disks of the same shape and

material. When the two disks (disk 1 and disk 2) are placed
closely enough, the crosstalk between different cavity
modes occurs, which is described by the coupled-mode
theory [31,32]:

(
da1
dt ¼ ðiω1 − κ1Þa1 þ ig12a2
da2
dt ¼ ðiω2 − κ2Þa2 þ ig21a1

; ð1Þ

where i, a, κ, and ω are the imaginary unit, the mode
intensity, the decay rate, and the angular frequency,
respectively. Note that κ1 ¼ κ2 ¼ κ0 and ω1 ¼ ω2 ¼ ω0

for identical disks. Without loss of generality, we set
g12 ¼ g21 ¼ g [20].
For a monolayer honeycomb disk array with a lattice

constant a0, two subsets of disks exist and are denoted as

“a” and “b” [35,36]. The NN of one a disk is three b disks
and vice versa. Thus, the equations of each disk could be
written as 8>><

>>:
daj
dt ¼ ðiω0 − κ0Þaj þ

P
δ
ðigbjþδÞ

dbj
dt ¼ ðiω0 − κ0Þbj þ

P
δ0
ðigajþδ0 Þ

; ð2Þ

where δ and δ0 are the site-to-site displacement with respect
to disk aj and bj, respectively [20]. Note that j is the serial
number for different disks.
Using aj ¼ ð1= ffiffiffiffi

N
p ÞPk expð−ik · rj;aÞak and bj ¼

ð1= ffiffiffiffi
N

p ÞPk expð−ik · rj;bÞbk [37], where rj;a (rj;b) is the
vector position of aj (bj) and N is the total number of a
(or b) disks, Fourier transform is conducted and Eq. (2) is
transformed into8>><

>>:
dak
dt ¼ ðiω0 − κ0Þak þ igbk

P
δ
expð−ik · δÞ

dbk
dt ¼ ðiω0 − κ0Þbk þ igak

P
δ0
expð−ik · δ0Þ : ð3Þ

Now in the reciprocal space, we can see from the
equations that, in the same Brillouin zone, the modes
localized in the a sites (a modes for brevity) with wave-
vector k will only couple to the b modes with wave vector
k. This is due to the phase-match mechanism [20]. The
formation of Dirac cones is detailed in Ref. [20].
In the following, we consider the TBPC case where two

identical honeycomb photonic crystal layers are stacked
with a small twist angle. When the twist angle is com-
mensurate, the superlattice is strictly periodic and the lattice
constant is approximately a0=θ. The mini Brillouin zone of
the superlattice is constructed from the difference between
the two K wave vectors at the K point for the two layers
(denoted as K1 and K2), as shown in Fig. 2(a).
Since both photonic crystal layers can be characterized

by Eqs. (1)–(3), we now have four sets of disks: a1, b1, a2,
and b2, which represent a and b disks in layer No. 1 and
layer No. 2, respectively. Here, we take the disk a1j as an
example. By only considering NN sites for interlayer
coupling, we have

da1j
dt

¼ ðiω0 − κ0Þa1j þ
X
δ1

ðigintrab1ðjþδ1ÞÞ

þ igðlaaÞa2ðjþlaaÞ þ igðlabÞb2ðjþlabÞ; ð4Þ
where laa and lab mean the displacement from disk a1j to its
closest a disk and b disk in layer No. 2, respectively. Note
that for the interlayer crosstalk, we consider the coupling
only between closest disks. This approximation is generally
used in TBG and proved by multiple experiments to be
sufficiently accurate [1–3]. The interlayer coupling strength
between different sets of disks is given by the function of g,

(a)

(b)

FIG. 1. The TBPC system. (a) Schematic of TBPC with light
localized in the AA stacking regions when a photonic magic
angle is present (left), along with one representative dispersion of
flat moiré bands leading to such localized modes (right). The
lattice constant of monolayer honeycomb photonic crystal is
1.2 μm, while each nanodisk is 220 nm high with a diameter of
400 nm. The moiré bands are analytically calculated with a twist
angle and interlayer separation of 5.09° and 50 nm, respectively.
Note that the band flattening effect occurs in the 2nd and 3rd
bands, which are around the 0 meVenergy shift. (b) Comparison
between the theoretical models for TBG and TBPC. Similar to
TBG, the disks in TBPC fall into two categories: disk a and disk
b. However, the coupled modes in TBPC are subject to non-
negligible optical losses. The lattice constants for graphene
and honeycomb photonic crystal are both denoted as d
[34,35]. The reference frame is also illustrated where the z axis
is perpendicular to photonic crystal planes.
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written as gðlaaÞ and gðlabÞ. The function g only depends on
the displacement between the two disks in different layers.
Analogous to the monolayer case, we can define

a1k1 ; b1k1 ; a2k2 ; and b2k2 from a1j¼ð1= ffiffiffiffi
N

p ÞPk1 expð−ik1·
r1j;aÞa1k1 , b1j ¼ ð1= ffiffiffiffi

N
p ÞPk1 expð−ik1 · r1j;bÞb1k1 ,

a2j ¼ ð1= ffiffiffiffi
N

p ÞPk2 expð−ik2 · r2j;aÞa2k2 , b2j ¼ ð1= ffiffiffiffi
N

p Þ×P
k2 expð−ik2 · r2j;bÞb2k2 , and apply these equations in

Eq. (4) for the Fourier transform:

da1k1
dt

¼ ðiω0 − κ0Þa1k1 þ igintrab1k1
X
δ1

ð−ik1 · δ1Þ

þ
X
k2

�
ζaaðk1; k2Þa2k2 þ ζabðk1; k2Þb2k2

�
; ð5Þ

where ζaaðk1; k2Þ (or ζabðk1; k2Þ) are the coupling strength
between a1k1 and a2k2 (or b2k2). Here, we define the unit
area of superlattice as Sc. Using the continuum model,
ζaaðk1; k2Þ can be written as

ζaaðk1; k2Þ ¼
i
Sc

Z
exp

�
iðk1 − k2Þ · r1;a

�
· expð−ik2 · laaÞ · gðlaaÞd2r1;a: ð6Þ

After the Fourier transform, the following discussion is
in the reciprocal space. Compared to Eq. (3), the first term

on the right-hand side of Eq. (5) corresponds to the property
of the disk itself, the second term corresponds to the
intralayer coupling mechanism, and the last two terms
describe the interlayer coupling. Because of the periodicity
of the superlattice, the factor expð−ik2 · laaÞ · gðlaaÞ is also
periodic. Thus ζ is zero almost everywhere except the cases
when k2 − k1 ¼ n · G1 þm · G2. Here G1 and G2 are the
reciprocal eigenvectors of the superlattice [Fig. 2(b)] [20],
which describe the new phase-match mechanism.
Next, the AA point (the center of AA stacking region

where the top and bottom honeycomb photonic crystal layers
are well aligned [38,39]) is selected as the origin of
coordinates, based on which proper superlattices are chosen.
Within the hexagonal superlattice around the AA point, we
find laa ¼ θ × r1j;a and K0 · laa ¼ −ðθ × K0Þ · r1j;a, where
K0 represents the wave vector of the midpoint between the
two K points (one for layer No. 1 and the other one for layer
No. 2). So, Eq. (6) can be written as [20]

ζaaðk1; k2Þ ¼
i
Sc

Z
exp

�
i(k1 − k2 − ðθ × K0Þ) · r1;a

�
· gðθ × r1Þd2r1;a: ð7Þ

From Eq. (7), we obtain the actual value for the interlayer
coupling strength. The NN coupling in real space is a series
of inter-wave-vector coupling in the reciprocal space. For
instance, if we analyze the k1 ¼ k mode in layer No. 1, the
a − a interlayer coupling strength will reach the maximum
when k2 ¼ k, kþ G1, or kþ G2, and this maximum
coupling strength is denoted as t1. The second maximum
coupling strength t2 can be found at the following points:
k2 ¼ kþ G1 − G2, k − G1 þ G2, or kþ G1 þ G2. Higher
orders of t are localized at outer wavevector points.
Compared with TBG [1], for the TBPC characterized in
this work, the interlayer gap (≤200 nm) is much smaller
than the monolayer lattice constant (1.2 μm), so higher
orders of coupling are relatively strong and t2 must be
included in the theoretic model. With t1 and t2, we are
already able to obtain all primary conclusions.
As a result of considering t1 and t2, the k2 ¼ k mode in

layer No. 2 couples to six modes in layer No. 1 [Fig. 2(b)]:
k, kþ G1, kþ G2, kþ G1 − G2, k − G1 þ G2, and
kþ G1 þ G2, and vice versa. Since we have four sets of
disks in the TBPC (a1, b1, a2, b2), a total number of
24 modes are considered in our calculation. We truncated
the equation to include these 24 modes (12 for layer No. 1
and 12 for layer No. 2), yielding a 24 × 24 matrix for
diagonalization. From this matrix, together with the elec-
tric-field distribution of the single-disk TE mode [Fig. 2(c)]
that leads to the Dirac cone [Fig. 2(d)] [20], we can obtain
the photonic band structures in TBPC with different twist
angles and interlayer separation.
Akin to TBG, the photonic moiré bands in TBPC

strongly rely on both the twist angle and the interlayer
separation. In Figs. 3(a)–3(d), we solve for the photonic

(a)

(c) (d)

(b)

FIG. 2. Intersite coupling features in TBPC. (a) Top view of
TBPC in the real space showing moiré patterns due to a twist (left)
and the mini-Brillouin zone hosted by the moiré superlattices
(right). (b) TBPC intersite coupling in the reciprocal space, where
blue solid dots and green circles stand for the different modes with
specific wave vectors in the photonic crystal layer No. 1 and layer
No. 2, respectively. The red hexagon denotes the mini-Brillouin
zone. (c) The numerically solved TE mode in a nanodisk (left) and
the double-degenerated states at the Dirac point in a monolayer
honeycomb photonic crystal. The disk positions are indicated by
dashed circles. The jEj fields are normalized separately in each
panel. (d) The corresponding Dirac-point feature in the photonic
band structure along the M − K − Γ direction.
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band structures of TBPC with different twists and an
interlayer separation of 80 nm. Note that we only consider
theK point here and theK0 point is not shown for simplicity
[1,33]. When the twist angle is decreased to 4.6°, the group
velocity at the Dirac-point energy partially vanishes, and
the hybridized photonic bands get flattened with disper-
sionless characteristics roughly from Ms through Ks,
corresponding to a photonic magic angle. The density of
states is also peaked due to the existence of photonic flat
bands. As the twist keeps decreasing, the second photonic
magic angle is reached at 3.6°, along with the appearance
of magic-angle effects near Γs. Further reducing the
interlayer twist angle destroys the photonic magic-angle
effect. In TBPC, the number of bands in a fixed energy
range goes up monotonically with a decreasing twist
angle. Here, we evaluate the local bandwidth between
the two bands closest to the Dirac-point energy [20], and
plot it as a function of the twist angle in Fig. 3(e), which
illustrates the evolution of bandwidth narrowing around
these two photonic magic angles.
Using the above model, we also observe that the

photonic magic angles have a strong dependence on the
interlayer separation. To quantify the evolution of magic
angles with different separation, we normalize the local
bandwidth by twist angles [20] and plot it as a function of
the twist angle and the interlayer separation in Fig. 4(a).
Only low twists are calculated due to local coupling
approximation in our theoretical model. Here, the minimal
(nearly zero) bandwidths are the direct results of photonic
flat bands, and thus are the indicator for photonic magic
angles. Two magic-angle traces can be resolved in Fig. 4(a).
One notable feature of the photonic magic angle is that
smaller interlayer separation leads to larger magic angles: at
larger twists, there is a long distance between monolayer
Dirac cones, so an enhanced interlayer coupling strength
(i.e., a smaller interlayer separation) is required for band
flattening by compression. Such a trend in TBPC is in good

agreement with pressure-tuned magic angle and band
engineering in TBG [40–42]. This correspondence again
testifies to the uniqueness of TBPC as a fast and versatile
platform for understanding and designing moiré super-
lattice systems with van der Waals bilayers. The influence
of t2 is discussed in Ref. [20].

(a) (b) (c) (d) (e)

FIG. 3. Photonic moiré band structures. (a)–(d) Energy dispersions and density of states (DOS) for an interlayer separation of 80 nm
and twist angles of 2.8°, 3.6°, 4.6°, and 9°, respectively. The energy is referenced to the Dirac-point energy. Note that when the twist
angle equals 3.6° and 4.6°, photonic flat bands appear and are highlighted in red. (e) Local bandwidth of the two photonic bands closest
to the Dirac-point energy as functions of the twist angle with an interlayer separation of 80 nm. The bandwidth reaches minimum at the
photonic magic angles (3.6° and 4.6°).

(a) (c)

(b) (d)

FIG. 4. Phase diagram of photonic magic angles. (a) The phase
diagram showing the normalized local bandwidth with varying
twist angles and interlayer separation. (b) Comparison between
the local bandwidth, and the integrated jEj in the AA region
calculated by numerical simulation, which are normalized by the
minimum local bandwidth and the maximum integrated jEj,
respectively. The dashed line is a guide to the eye. (c) Evolution
of jEj profile in the AA region with different interlayer separation
and a twist angle of 5.09°. (d) Numerically calculated real-space
jEj profile when the twist angle and interlayer separation are
5.09° and 50 nm, respectively.
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To test the results of our TBPC model, we perform full-
wave numerical simulation of the TBPC with commensu-
rate twist angles of 4.41°, 5.09°, and 6.01° [20], where the
moiré superlattice has a rigorous periodicity and can be
modeled numerically. Simulation details with additional
results can be found in Ref. [20]. We find that the photonic
flat bands at magic angles lead to a highly localized
optical mode in the AA regions, just as the case of
TBG. Figure 4(b) shows good agreement between our
theoretical modeling and numerical simulation: wherever
the theory predicts the existence of photonic flat bands, a
strong peak of numerical jEj in the AA regions can be
found nearby. The slight discrepancy here could be reduced
by involving higher orders of coupling in the theoretical
model (t3, t4, etc.).
To further explore the magic-angle effects, the evolution

of jEj in the AA region is plotted in Fig. 4(c), showing that
the localized mode immediately decays as the interlayer
separation deviates from the optimal value for the flat
bands. A representative large-area jEj profile associated
with photonic flat bands is illustrated in Fig. 4(d), dem-
onstrating strong field localization in AA regions at the
magic angles, in contrast to the field localization in large-
twist-angle quasicrystals due to Anderson modes [16,18].
The corresponding H-field profiles also have strong locali-
zation in AA regions [20]. Those magic-angle photonic
“hot spots” with zero group velocity may find potential
applications in areas such as photoluminescence enhance-
ment [43], molecular vibration detection [44], and slow
light generation [45].
In summary, we have discovered the existence of

photonic flat bands in two closely coupled planar photonic
crystals at certain magic angles. Furthermore, we have
formulated a theoretical model to describe the coupling
mechanism and calculate the photonic band structure in the
twisted bilayer photonic crystals (TBPC). The evolution of
photonic magic angle with the interlayer separation reveals
a striking similarity between the TBPC and the electronic
twisted bilayer graphene (TBG). Extensive numerical
simulations further resolve the photonic hot spots localized
in the AA regions at the magic angles. Potential exper-
imental realizations include nano-fabrication technologies
[46], two-photon polymerization lithography [47], and
microwave/acoustic devices [48,49]. For other bilayer
van der Waals moiré structures where moiré band flattening
phenomena exist, it is possible that the corresponding
TBPC would also host similar photonic behaviors if their
mathematical descriptions match [20]. Note that a judicious
design of the TBPC system is necessary to ensure that the
symmetry and coupling conditions of the corresponding
van der Waals bilayers are well preserved in TBPC. It is an
important future topic to explore approaches that are
capable of quantitatively interpreting both the moiré
photonics and moiré van der Waals systems. Our model
demonstrates an interesting parity between fermionic and

bosonic moiré systems, which not only paves the way to the
development of moiré photonics, but also serves as a
tunable platform for probing and predicting new physics
in moiré superlattices generally and in turn guides the
exploration of van der Waals structures.
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